Cloud-Assisted Privacy-Preserving Method for Healthcare Using Adaptive Fractional Brain Storm Integrated Whale Optimization Algorithm
The security of medical data in the cloud is the key consideration of cloud customers. While publishing the medical data, the cloud distributor may suffer from data leakages and attacks such that the data may leak. In order to resolve this, this article devises the developed Adaptive Fractional Brain Storm Integrated Whale Optimization Algorithm (AFBS_WOA), which is the hybridization of Adaptive Fractional Brain Storm Optimization (AFBSO) and Whale Optimization algorithm (WOA). The developed AFBS_WOA algorithm generates the key matrix coefficient for retrieving the perturbed database in order to preserve the privacy of healthcare data in the cloud. The developed AFBS-WOA scheme utilized the fitness function involving utility and privacy measures for calculating the secret key. Here, the privacy-preserved database is obtained by multiplying the input database with a key matrix based on developed AFBS-WOA using the Tracy–Singh product. For data retrieval, the secret key is shared with the service provider in order to retrieve the database, and then the data are accessed. Moreover, the experimental result demonstrates that the developed AFBS_WOA model attained the maximum utility and privacy measure of 0.1872 and 0.8755 using the Hungarian dataset.