scholarly journals Bifurcation Analysis of a Fractional-Order Delayed Rolling Mill’s Main Drive Electromechanical Coupling System

2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Rui Zhang ◽  
Jinbin Wang ◽  
Lifeng Ma

This work is focused on a rolling mill’s main drive electromechanical coupling system. Firstly, we equip electromechanical coupling system with fractional-order time delay. Secondly, we, respectively, derive the conditions for occurrence of Hopf bifurcation around equilibriums E 0 0 , 0 , 0 , 0 and E 1 x 1 ∗ , 0 , x 3 ∗ , 0 . It is found that the fractional order α and time delay τ in the system play an important role on the system stability. Finally, numerical simulations are given to verify the analytic results.

2018 ◽  
Vol 2018 ◽  
pp. 1-8
Author(s):  
Zhen Wang ◽  
Xinhe Wang

A fractional-order epidemic model with time delay is considered. Firstly, stability of the disease-free equilibrium point and endemic equilibrium point is studied. Then, by choosing the time delay as a bifurcation parameter, the existence of Hopf bifurcation is studied. Finally, numerical simulations are given to illustrate the effectiveness and feasibility of theoretical results.


2014 ◽  
Vol 2014 ◽  
pp. 1-7
Author(s):  
Qingsong Liu ◽  
Yiping Lin ◽  
Jingnan Cao ◽  
Jinde Cao

The local reaction-diffusion Lengyel-Epstein system with delay is investigated. By choosingτas bifurcating parameter, we show that Hopf bifurcations occur when time delay crosses a critical value. Moreover, we derive the equation describing the flow on the center manifold; then we give the formula for determining the direction of the Hopf bifurcation and the stability of bifurcating periodic solutions. Finally, numerical simulations are performed to support the analytical results and the chaotic behaviors are observed.


2015 ◽  
Vol 24 (1) ◽  
pp. 014501 ◽  
Author(s):  
Shuang Liu ◽  
Shuang-Shuang Zhao ◽  
Zhao-Long Wang ◽  
Hai-Bin Li

2012 ◽  
Vol 594-597 ◽  
pp. 2693-2696
Author(s):  
Chang Jin Xu

In this paper, a Lotka-Volterra model with time delay is considered. The stability of the equilibrium of the model is investigated and the existence of Hopf bifurcation is proved. Numerical simulations are performed to justify the theoretical results. Finally, main conclusions are included.


Author(s):  
SANTOSHI PANIGRAHI ◽  
Sunita Chand ◽  
S Balamuralitharan

In this paper, we study a fractional order time delay for nonlinear financial system. By using Laplace transformation, stability and Hopf bifurcation analysis have been done for the model. Furthermore, numerical simulation has been carried out for better understanding of our results.


2015 ◽  
Vol 25 (02) ◽  
pp. 1550020 ◽  
Author(s):  
Vedat Çelik

This paper presents the bifurcation analysis of fractional order model of delayed single cell which is proposed for delayed cellular neural networks with respect to the time delay τ. The bifurcation points, time delay τc, are determined by modified Mikhailov stability criterion for a range of fractional delayed cell order 0.3 ≤ q < 1. Numerical results obtained from Adams–Bashforth–Moulton method demonstrate that the supercritical Hopf bifurcation occurs in the system.


Complexity ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-18
Author(s):  
Feifan Zhang ◽  
Wenjiao Zhou ◽  
Lei Yao ◽  
Xuanwen Wu ◽  
Huayong Zhang

In this research, a continuous nutrient-phytoplankton model with time delay and Michaelis–Menten functional response is discretized to a spatiotemporal discrete model. Around the homogeneous steady state of the discrete model, Neimark–Sacker bifurcation and Turing bifurcation analysis are investigated. Based on the bifurcation analysis, numerical simulations are carried out on the formation of spatiotemporal patterns. Simulation results show that the diffusion of phytoplankton and nutrients can induce the formation of Turing-like patterns, while time delay can also induce the formation of cloud-like pattern by Neimark–Sacker bifurcation. Compared with the results generated by the continuous model, more types of patterns are obtained and are compared with real observed patterns.


2018 ◽  
Vol 313 ◽  
pp. 306-315 ◽  
Author(s):  
Swati Tyagi ◽  
Subit K Jain ◽  
Syed Abbas ◽  
Shahlar Meherrem ◽  
Rajendra K Ray

Sign in / Sign up

Export Citation Format

Share Document