scholarly journals Constraints of Pore-Bulk Strain Ratio and Interference Time on the Evolution of Coal Permeability during CO2 Injection

Geofluids ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-16
Author(s):  
Guannan Liu ◽  
Jishan Liu ◽  
Feng Gao

CO2 injection into coal seam triggers a series of processes that are coupled all together through a permeability model. Previous studies have shown that current permeability models cannot explain experimental data as reported in the literature. This knowledge gap defines the goal of this study. We hypothesize that this failure originates from the assumption that the pore strain is the same as the bulk strain in order to satisfy the Betti-Maxwell reciprocal theorem. This assumption is valid only for the initial state without gas sorption and deformation and for the ultimate state with uniform gas sorption and uniform deformation within the REV (representative elementary volume). In this study, we introduce the pore-bulk strain ratio and interference time to characterize the process of gas sorption and its associated nonuniform deformation from the initial state to the ultimate state. This leads to a new nonequilibrium permeability model. We use the model to fully couple the coal deformation and gas flow. This new coupled model captures the impact of coal local transient behaviors on gas flow. Results of this study clearly show that coal permeability is constrained by the magnitudes of initial and ultimate pore-bulk strain ratios and interference time, that current permeability data in the literature are within these bounds, and that the evolutions of coal permeability all experience similar stages from the initial value to the ultimate one.

2020 ◽  
Vol 3 (4) ◽  
pp. 305
Author(s):  
Jianhua Li ◽  
Bobo Li ◽  
Jiang Xu ◽  
Zhihe Wang ◽  
Zheng Gao ◽  
...  

2010 ◽  
Vol 83 (1) ◽  
pp. 21-30 ◽  
Author(s):  
Jishan Liu ◽  
Zhongwei Chen ◽  
Derek Elsworth ◽  
Xiexing Miao ◽  
Xianbiao Mao

Geofluids ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-9
Author(s):  
Xiao Fukun ◽  
Meng Xin ◽  
Li Lianchong ◽  
Liu Jianfeng ◽  
Liu Gang ◽  
...  

Based on gas seepage characteristics and the basic thermo-solid-gas coupling theory, the porosity model and the dynamic permeability model of coal body containing gas were derived. Based on the relationship between gas pressure, principal stress and temperature, and gas seepage, the thermo-solid-gas coupling dynamic model was established. Initial values and boundary conditions for the model were determined. Numerical simulations using this model were done to predict the gas flow behavior of a gassy coal sample. By using the thermo-solid-gas coupling model, the gas pressure, temperature, and principal stress influence, the change law of the pressure field, displacement field, stress field, temperature field, and permeability were numerically simulated. Research results show the following: (1) Gas pressure and displacement from the top to the end of the model gradually reduce, and stress from the top to the end gradually increases. The average permeability of the Y Z section of the model tends to decrease with the rise of the gas pressure, and the decrease amplitude slows down from the top of the model to the bottom. (2) When the principal stress and temperature are constant, the permeability decreases first and then flattens with the gas pressure. The permeability increases with the decrease of temperature while the gas pressure and principal stress remain unchanged.


2021 ◽  
Vol 25 (6 Part B) ◽  
pp. 4651-4658
Author(s):  
Teng Teng ◽  
Xiaoyan Zhu ◽  
Yu-Ming Wang ◽  
Chao-Yang Ren

Gas-flow in coal or rock is hypersensitive to the changes of temperature, confin?ing pressure and gas pressure. This paper implemented a series of experiments to observe the seepage behavior, especially the permeability evolution of CO2 in naturally fractured coal sample under coupled hydro-thermal-mechanical conditions. The experimental results show that coal permeability increases exponentially with the increasing gas pressure, and tends to be linear when the confining pressure is high. Coal permeability decreases exponentially with the increasing confining pressure. Coal permeability decreases with the increasing temperature generally, but it may bounce up when the temperature rises to high. The results provide reference for the projects of coal gas extraction and carbon dioxide geological sequestration.


2016 ◽  
Vol 28 (7) ◽  
pp. 072003 ◽  
Author(s):  
Bo Zhou ◽  
Peixue Jiang ◽  
Ruina Xu ◽  
Xiaolong Ouyang

2010 ◽  
Vol 84 (2) ◽  
pp. 103-114 ◽  
Author(s):  
Luke D. Connell ◽  
Meng Lu ◽  
Zhejun Pan

Sign in / Sign up

Export Citation Format

Share Document