scholarly journals Sampling and Mechanical Testing of Backfill in Large Mined-Out Area

Geofluids ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-8
Author(s):  
D. Q. Deng ◽  
N. Jiang ◽  
Y. Duan

To investigate the physicomechanical properties of stope backfill and to explore the mining conditions for an adjacent pillar, four boreholes, namely, GZK1, GZK2, GZK3, and GZK4, were constructed for taking the backfill core in the test stope. During borehole sampling, it is found that the strength of backfill is usually lower than that of the rock and ordinary concrete, and its resistance to tensile and compressive loads is limited. Therefore, the drilling speed should not be too fast, and a small amount of water is needed to continue drilling smoothly. For backfill with high strength, the sampling process is relatively smooth, and the backfill samples are relatively complete. GZK1 is located on the upper part of the stope near the footwall of the orebody, and the test results show that the backfill quality of this part is poor; thus, a complete backfill core cannot be obtained. GZK2 is located at the bottom of the stope close to the footwall of the orebody, GZK3 is located at the bottom of the stope close to the hanging wall of the orebody, and GZK4 is located at the top of the stope close to the hanging wall of the orebody. The average compressive strength and average tensile strength of the backfill samples obtained from the three boreholes, namely, GZK2, GZK3, and GZK4, are 2.928 to 3.583 MPa and 0.328 to 0.523 MPa, respectively, indicating that the backfill near the upper part and bottom close to the hanging wall of the orebody is good, while the backfill near the upper part close to the footwall of the orebody is poor. Special attention should be paid to the backfill with the range of GZK1 in the future second-step pillar mining process, and the sublevel method can be adopted to ensure the safety of the mining process. The backfill samples in the large goaf of No.17 room were obtained by geological drilling. Segregation occurred in the upper part of the No.17 room near the area of the footwall. The concentration and flow rate of the filling slurry were reasonably adjusted and controlled with the improvement of backfill quality. Therefore, the backfill strength of the No.17 room is generally good, which can meet the requirements of pillar mining, and also creates a good condition for the resource utilization of waste tailings of Caolou Iron Mine.

2014 ◽  
Vol 633-634 ◽  
pp. 743-746
Author(s):  
Tao Sun ◽  
Zhuo Chen

TC21 is a first high strength and damage-tolerant titanium alloy self-developed in China, which has independent intellectual property. As it is known to all, titanium alloy TC21 is one of the most widely used materials in aerospace. The improvement of cutting quality of titanium alloy is an urgent problem. In this paper, the orthogonal experiment were carried out to study surface roughness of turning TC21. The predictive model of surface roughness in turning TC21 was built by analysis of multivariable linear regression on the basis of experiment. Statistical test results indicated the established predictive model were in highly notable test status and had high reliability. These works provide references for machining TC21.


2015 ◽  
Vol 1129 ◽  
pp. 468-473
Author(s):  
Jing Liu ◽  
Xin Guo Zheng ◽  
Shu Ming Li ◽  
Zhi Zeng ◽  
De Jun Yang ◽  
...  

In some tunnels of railway lines located in water-rich region, due to the long-term water leakage and erosion, the foundation of railway lines showed large uneven settlement deformation, so the above concrete roadbed slabs also experienced uneven settlement accordingly. The smoothness of railway tracks diminished, and the speed of passing trains had to be limited to ensure safety. To restore the smoothness of the tracks, a dedicated polymer injection technology for quick uplift rehabilitation of uneven settlement concrete roadbed slabs was studied on site just within the specified daily skylight time (about 3 hours every day) of the railway lines. A hydrophobic polymer with low-viscosity, quick-setting and high-strength properties was used for injecting, filling and uplifting the concrete slabs in water-rich foundations. The high-precision electronic levels were adopted to monitor rising height of the tracks in real time. After rehabilitation, the filling quality of polymer injection under roadbed slabs was examined using Φ50 mm core samples and the strength of hardened polymer was verified by compressive strength test. Results indicated that the polymer could uplift the concrete roadbed slabs effectively and restore the smoothness of railway tracks accurately even in the water-rich environment. The research can provide some valuable references for quick rehabilitation of uneven settlement concrete roadbed slabs in water-rich tunnels.


2019 ◽  
Vol 9 (01) ◽  
pp. 47-54
Author(s):  
Rabbai San Arif ◽  
Yuli Fitrisia ◽  
Agus Urip Ari Wibowo

Voice over Internet Protocol (VoIP) is a telecommunications technology that is able to pass the communication service in Internet Protocol networks so as to allow communicating between users in an IP network. However VoIP technology still has weakness in the Quality of Service (QoS). VOPI weaknesses is affected by the selection of the physical servers used. In this research, VoIP is configured on Linux operating system with Asterisk as VoIP application server and integrated on a Raspberry Pi by using wired and wireless network as the transmission medium. Because of depletion of IPv4 capacity that can be used on the network, it needs to be applied to VoIP system using the IPv6 network protocol with supports devices. The test results by using a wired transmission medium that has obtained are the average delay is 117.851 ms, jitter is 5.796 ms, packet loss is 0.38%, throughput is 962.861 kbps, 8.33% of CPU usage and 59.33% of memory usage. The analysis shows that the wired transmission media is better than the wireless transmission media and wireless-wired.


Alloy Digest ◽  
1969 ◽  
Vol 18 (12) ◽  

Abstract Pyromet 600 is a corrosion-resisting nickel-base alloy, having a very desirable combination of high strength and workability, both hot and cold. It has high strength and resistance to oxidation at high temperatures. It is designed to meet the highest quality of the nuclear industry. This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties as well as creep. It also includes information on high temperature performance and corrosion resistance as well as forming, heat treating, machining, joining, and surface treatment. Filing Code: Ni-149. Producer or source: Carpenter Technology Corporation.


2020 ◽  
Vol 2020 (7) ◽  
pp. 2-10
Author(s):  
S.I. Kuchuk-Yatsenko ◽  
◽  
E.V. Antipin ◽  
O.V. Didkovskyi ◽  
V.I. Shvets ◽  
...  

Author(s):  
H Eyigor ◽  
E A Cetinkaya ◽  
D T Coban ◽  
G Ozturk ◽  
Ö Erdem

Abstract Objective External dacryocystorhinostomy is thought to cause mucociliary dysfunction by damaging the mucosa, in turn affecting ciliary activity and mucus quality. This study investigated the effect of external dacryocystorhinostomy on sinonasal function. Methods Patients scheduled for unilateral external dacryocystorhinostomy who underwent endoscopic nasal examination and paranasal sinus computed tomography were included in this study. A saccharine test was performed on the planned surgical side and the mucociliary clearance time was determined. The sinonasal quality of life was measured in all patients, pre-operatively and at six months post-operatively, using the Sino-Nasal Outcome Test-22. The Lund–Kennedy endoscopic score was also determined in all patients, both pre- and post-operatively. Results The study comprised 28 patients (22 females and 6 males). A statistically significant difference was found between the pre- and post-operative saccharine test results (p = 0.006), but not between the pre- and post-operative Sino-Nasal Outcome Test-22 scores (p > 0.05). Conclusion This study is one of only a few to investigate the effect of external dacryocystorhinostomy on sinonasal function. The results showed that external dacryocystorhinostomy impairs mucociliary clearance. The surgical procedure is well tolerated and does not significantly change nasal symptom scores.


Author(s):  
Muhsin Aljuboury ◽  
Md Jahir Rizvi ◽  
Stephen Grove ◽  
Richard Cullen

The goal of this experimental study is to manufacture a bolted GFRP flange connection for composite pipes with high strength and performance. A mould was designed and manufactured, which ensures the quality of the composite materials and controls its surface grade. Based on the ASME Boiler and Pressure Vessel Code, Section X, this GFRP flange was fabricated using biaxial glass fibre braid and polyester resin in a vacuum infusion process. In addition, many experiments were carried out using another mould made of glass to solve process-related issues. Moreover, an investigation was conducted to compare the drilling of the GFRP flange using two types of tools; an Erbauer diamond tile drill bit and a Brad & Spur K10 drill. Six GFRP flanges were manufactured to reach the final product with acceptable quality and performance. The flange was adhesively bonded to a composite pipe after chamfering the end of the pipe. Another type of commercially-available composite flange was used to close the other end of the pipe. Finally, blind flanges were used to close both ends, making the pressure vessel that will be tested under the range of the bolt load and internal pressure.


2021 ◽  
pp. 004051752110308
Author(s):  
Yang Liu ◽  
Zhong Xiang ◽  
Xiangqin Zhou ◽  
Zhenyu Wu ◽  
Xudong Hu

Friction between the tow and tool surface normally happens during the tow production, fabric weaving, and application process and has an important influence on the quality of the woven fabric. Based on this fact, this paper studied the influence of tension and relative velocity on the three kinds of untwisted-glass-fiber tow-on-roller friction with a Capstan-based test setup. Furthermore, an improved nonlinear friction model taking both tension and velocity into account was proposed. According to statistical test results, firstly, the friction coefficient was found to be positively correlated with tension and relative velocity. Secondly, tension and velocity were complementary on the tow-on-roller friction behavior, with neither being superior to the other. Thirdly, an improved model was found to present well the nonlinear characteristics between friction coefficient and tension and velocity, and predicational results of the model were found to agree well with the observations from Capstan tests.


2011 ◽  
Vol 121-126 ◽  
pp. 126-131 ◽  
Author(s):  
Qing Lei Xu ◽  
Tao Meng ◽  
Miao Zhou Huang

In this paper, effects of nano-CaCO3 on compressive strength and Microstructure of high strength concrete in standard curing temperature(21±1°C) and low curing temperature(6.5±1°C) was studied. In order to improve the early strength of the concrete in low temperature, the early strength agent calcium nitrite was added into. Test results indicated that 0.5% dosage of nano-CaCO3 could inhibit the effect of calcium nitrite as early strength agent, but 1% and 2% dosage of nano-CaCO3 could improve the strength of the concrete by 13% and 18% in standard curing temperature and by 17% and 14% in low curing temperature at the age of 3days. According to the XRD spectrum, with the dosage up to 1% to 2%, nano-CaCO3 can change the orientation index significantly, leading to the improvement of strength of concrete both in standard curing temperature and low curing temperature.


Sign in / Sign up

Export Citation Format

Share Document