scholarly journals Variation Law of Infrared Radiation Temperature of Unloading Fracture of Composite Coal-Rock

Geofluids ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-20
Author(s):  
Xin Li ◽  
Xue Wang ◽  
Zhen Yang ◽  
Hao Li ◽  
Yan Li ◽  
...  

For composite mining coal-rock dynamic disaster, combining the theory of thermodynamics, damage mechanics, and other disciplines, the thermodynamic coupling mathematical model of composite coal-rock under an unloading condition is deduced, and the simulation model of composite coal-rock is established for numerical simulation. And the variation law of thermal infrared radiation under triaxial loading and unloading of composite coal-rock is analyzed and verified by experiments. The results show the following findings: (1) The distribution of thermal infrared radiation temperature of composite coal-rock is different in different stages of stress. The overall temperature of the temperature field is lower than the initial temperature field in the three-dimensional stress loading stage and the stage of stress-keeping pressure, but the internal temperature of the coal body is the highest. In the first stage of “loading and unloading,” the temperature of a coal seam increases slightly, and the temperature of other parts of the rock layer increases except for the circular low-temperature zone. In the second stage of “loading and unloading,” an alternating zone of high and low temperatures appears in the rock mass, and the temperature field is enhanced, among which the temperature field reaches the strongest after unloading the confining pressure. After jumping over the maximum stress, the temperature field decreases as a whole at the instability and rupture stage. (2) The variation of surface average thermal infrared radiation temperature ( T ave ) of composite coal-rock can be divided into the initial fluctuation stage, the linear heating stage, the local decline stage, the temperature sudden increase stage, and the fracture decline stage. At three different unloading rates of 0.003 MPa/s, 0.03 MPa/s, and 0.05 MPa/s, the T ave of coal body, floor rock, and roof rock reach the maximum before composite coal-rock instability and fracture, and the temperature change of the coal body is the most obvious. (3) Under different confining pressure unloading rates, the T ave of roof rock, coal body, and floor rock shows a strong linear relationship with stress after linear fitting. And the correlation between simulation and experimental results after fitting is above 0.89. The larger the confining pressure unloading rate is, the shorter the peak time of T ave arrives, and the larger the peak value. The comparison between the experimental results and the simulation analysis shows that the two results are consistent, and the research results can provide a theoretical basis for the prevention and control of dynamic disasters in coal and rock mining.

2010 ◽  
Vol 10 (16) ◽  
pp. 7753-7761 ◽  
Author(s):  
Q. Min ◽  
R. Li

Abstract. In addition to microphysical changes in clouds, changes in nucleation processes of ice cloud due to aerosols would result in substantial changes in cloud top temperature as mildly supercooled clouds are glaciated through heterogenous nucleation processes. Measurements from multiple sensors on multiple observing platforms over the Atlantic Ocean show that the cloud effective temperature increases with mineral dust loading with a slope of +3.06 °C per unit aerosol optical depth. The macrophysical changes in ice cloud top distributions as a consequence of mineral dust-cloud interaction exert a strong cooling effect (up to 16 Wm−2) of thermal infrared radiation on cloud systems. Induced changes of ice particle size by mineral dusts influence cloud emissivity and play a minor role in modulating the outgoing longwave radiation for optically thin ice clouds. Such a strong cooling forcing of thermal infrared radiation would have significant impacts on cloud systems and subsequently on climate.


2013 ◽  
Vol 138 ◽  
pp. 119-125 ◽  
Author(s):  
Jörg Lewandowski ◽  
Karin Meinikmann ◽  
Thomas Ruhtz ◽  
Franziska Pöschke ◽  
Georgiy Kirillin

1974 ◽  
Vol 16 (2) ◽  
pp. 385-393 ◽  
Author(s):  
P.Yu. Butyagin ◽  
V.V. Garanin ◽  
A.R. Kuznetsov

2021 ◽  
Vol 2021 ◽  
pp. 1-16
Author(s):  
Lewen Wu ◽  
Keping Zhou ◽  
Feng Gao ◽  
Zhongyuan Gu ◽  
Chun Yang

In the operations of underground rock engineering, such as mining, the formation of goafs is often accompanied by unloading and energy effects. In this study, a cyclic loading and unloading stress test is carried out to analyze the strength characteristics of the loaded samples under different loading and unloading ranges as well as different numbers of cycles. The rock force is accompanied by substantial energy changes. To better fit the energy analysis under cyclic loading and unloading conditions, thermal infrared radiation characteristic analysis is performed during rock loading and unloading. An infrared radiation camera is adopted to detect the infrared characteristics of the rock force process after cyclic loading and unloading. Multiangle detection is implemented on the temperature, temperature field, and frequency histogram. The analysis shows that cyclic loading and unloading first strengthen and then weaken the rock. Moreover, the failure caused by the local stress concentration leads to a sharp increase in the temperature. There are significant temperature fluctuations before and after failure, and the temperature field after failure can be divided into three zones, namely, the normal temperature zone, heating zone, and mutational temperature zone, to comprehensively reflect that rock compression failure which is accompanied by the process of energy accumulation and release. On the basis of infrared energy analysis, the index of the energy release rate is introduced, and the loading and unloading analysis model is constructed. The research results reveal that rock failure is accompanied by the process of energy accumulation and release, which provides evidence for the analysis of the spatial stability of the rock mass under cyclic loading and unloading conditions and engineering excavation.


2020 ◽  
Vol 53 (11) ◽  
pp. 4839-4856 ◽  
Author(s):  
Xin Cai ◽  
Zilong Zhou ◽  
Lihai Tan ◽  
Haizhi Zang ◽  
Zhengyang Song

2020 ◽  
Vol 24 (6 Part B) ◽  
pp. 3933-3940
Author(s):  
Yan-Bin Yang ◽  
Feng Cui

In view of the complexity of the rules of rock strata fracture in steeply inclined and extra thick coal seam, the mining method of horizontal section top coal caving was put forward. In this paper, the physical similarity simulation model is established to analyze the movement rules of rock strata. The relationship between the form of rock strata fracture and the thermal infrared radiation is analyzed according to studying the characteristics of the thermal infrared radiation temperature of the rock strata fracture. Meanwhile, the changes characteristics of abnormal area of thermal infrared radiation were mastered, and the precursors of thermal infrared radiation of rock strata fracture were predicted. The results showed that the rock strata fracture form of steeply inclined and extra thick coal seam is related to the mining depth.


2019 ◽  
Vol 27 (10) ◽  
pp. 14246 ◽  
Author(s):  
Howard W. Yoon ◽  
Vladimir Khromchenko ◽  
George P. Eppeldauer

Sign in / Sign up

Export Citation Format

Share Document