scholarly journals Linkable Ring Signature Scheme Using Biometric Cryptosystem and NIZK and Its Application

2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Xuechun Mao ◽  
Lin You ◽  
Chengtang Cao ◽  
Gengran Hu ◽  
Liqin Hu

Biometric encryption, especially based on fingerprint, plays an important role in privacy protection and identity authentication. In this paper, we construct a privacy-preserving linkable ring signature scheme. In our scheme, we utilize a fuzzy symmetric encryption scheme called symmetric keyring encryption (SKE) to hide the secret key and use non-interactive zero-knowledge (NIZK) protocol to ensure that we do not leak any information about the message. Unlike the blind signature, we use NIZK protocol to cancel the interaction between the signer (the prover) and the verifier. The security proof shows that our scheme is secure under the random oracle model. Finally, we implement it on a personal computer and analyze the performance of the constructed scheme in practical terms. Based on the constructed scheme and demo, we give an anonymous cryptocurrency transaction model as well as mobile demonstration.

2021 ◽  
Vol 11 (16) ◽  
pp. 7350
Author(s):  
Jaeheung Lee ◽  
Yongsu Park

It is well known that conventional digital signature algorithms such as RSA and ECDSA are vulnerable to quantum computing attacks. Hash-based signature schemes are attractive as post-quantum signature schemes in that it is possible to calculate the quantitative security level and the security is proven. SPHINCS is a stateless hash-based signature scheme and introduces HORST few-time signature scheme which is an improvement of HORS. However, HORST as well as HORS suffers from pretty large signature sizes. HORSIC is proposed to reduce the signature size, yet does not provide in-depth security analysis. In this paper, we propose HORSIC+, which is an improvement of HORSIC. HORSIC+ differs from HORSIC in that HORSIC+ does not apply f as a plain function to the signature key, but uses a member of a function family. In addition, HORSIC+ uses the chaining function similar to W-OTS+. These enable the strict security proof without the need for the used function family to be a permutation or collision resistant. HORSIC+ is existentially unforgeable under chosen message attacks, assuming a second-preimage resistant family of undetectable one-way functions and cryptographic hash functions in the random oracle model. HORSIC+ reduces the signature size by as much as 37.5% or 18.75% compared to HORS and by as much as 61.5% or 45.8% compared to HORST for the same security level.


2010 ◽  
Vol 40-41 ◽  
pp. 643-646
Author(s):  
Qi Xie

The aim of self proxy is to protect the signer’s permanent secret key. In 2007, Kim and Chang proposed a self proxy signature scheme. In this paper, we show that their scheme cannot resist the warrant revision attack. Anyone can forge a valid proxy warrant and generate a valid self proxy signature for any message, when he gets a self proxy signature. To overcome their weakness, an improvement scheme is proposed, which is provably secure in random oracle model.


2014 ◽  
Vol 571-572 ◽  
pp. 69-73
Author(s):  
Xiu Hua Lu ◽  
Jie Fang

Florian Böhl et al. introduced tag-based signature schemes in 2013. We focus on their SIS-based tag-based signature scheme in lattice-based cryptography. Without aggregation techniques in lattice-based signatures, their tag-based signature has long signature length. We use the technique of lattice basis delegation with fixed dimension to shorten the signature length. Compared with the original scheme, our scheme’s signature is one-half length, at the price of security proof in the random oracle model.


2019 ◽  
Vol 11 (6) ◽  
pp. 77 ◽  
Author(s):  
Demba Sow ◽  
Mamadou Ghouraissiou Camara

A new variant of the ElGamal signature scheme called "a Generalized ElGamal signature scheme" is proposed in 2011. The Generalized ElGamal signature scheme is a modified ElGamal signature scheme. In this paper, we propose the security proof of the Generalized ElGamal signature scheme in the random oracle model. First, we recall some security notions of signature schemes and show the security of the modified ElGamal Signature scheme.


2020 ◽  
Vol 2020 ◽  
pp. 1-12
Author(s):  
Quanrun Li ◽  
Chingfang Hsu ◽  
Debiao He ◽  
Kim-Kwang Raymond Choo ◽  
Peng Gong

With the rapid development of quantum computing and quantum information technology, the universal quantum computer will emerge in the near decades with a very high probability and it could break most of the current public key cryptosystems totally. Due to the ability of withstanding the universal quantum computer’s attack, the lattice-based cryptosystems have received lots of attention from both industry and academia. In this paper, we propose an identity-based blind signature scheme using lattice. We also prove that the proposed scheme is provably secure in the random oracle model. The performance analysis shows that the proposed scheme has less mean value of sampling times and smaller signature size than previous schemes. Thus, the proposed scheme is more suitable for practical applications.


2021 ◽  
Vol 3 (4) ◽  
Author(s):  
Seth Alornyo ◽  
Kingsford Kissi Mireku ◽  
Mustapha Adamu Mohammed ◽  
Daniel Adu-Gyamfi ◽  
Michael Asante

AbstractKey-insulated encryption reduces the problem of secret key exposure in hostile setting while signcryption cryptosystem attains the benefits of digitally signing a ciphertext and public key cryptosystem. In this study, we merge the primitives of parallel key-insulation cryptosystem and signcryption with equality test to construct ID-based parallel key-insulated signcryption with a test for equality (ID-PKSET) in cloud computing. The construction prevent data forgery, data re-play attacks and reduces the leakage of secret keys in harsh environments. Our scheme attains the security property of existential unforgeable chosen message attack (EUF-CMA) and indistinquishable identity chosen ciphertext attack (IND-ID-CCA2) using random oracle model.


Sign in / Sign up

Export Citation Format

Share Document