scholarly journals Effects of Sediment Dredging on Nutrient Release and Eutrophication in the Gate-Controlled Estuary of Northern Taihu Lake

2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Xi Chen ◽  
Yanhua Wang ◽  
Tian Sun ◽  
Yu Huang ◽  
Yan Chen ◽  
...  

Estuarine zones are regarded as the ecotones connecting the rivers and lakes. Sediment dredging is a conventional treatment technology that is widely used to remove the internal loading in estuarine zones worldwide. However, what is the characteristic of nutrient release in the gate-controlled estuary and how long this practice is effective are still unclear. Hence, sediment and water samples were collected from dredged and undredged regions around the gate-controlled estuary of northern Taihu Lake for laboratory experiments, in which they were subjected to different temperatures, depths, and disturbance levels. The total nitrogen (TN) and total phosphorus (TP) concentrations of the dredged region were lower than those from the undredged region under stable hydrodynamic conditions. A high dynamic release rate (R) of nutrients in the dredged sediments (RTN = 164.75 mg/m2·d and RTP = 5.83 mg/m2·d) existed under dynamic release conditions (stirring speeds: 90 and 120 r/min). The effect of disturbance and temperature on release rate and nutrient form was completely different for the static and dynamic release cases. The nutrient loads from dynamic release were 4–17 times greater than those from static release. For unstable hydrodynamic conditions, the release rate from the bottom sediment exceeded that from the surface sediment in the undredged region. These results indicated that, under stable hydrodynamic conditions, dredging improves long-term water quality. However, dredging alone in unstable hydrodynamic conditions may not remove the potential risk of internal release in the long term. Specific ecological and engineering measures should be combined with dredging practice to restore estuary habitats and minimize the release of internal pollutants.

1998 ◽  
Vol 37 (2) ◽  
pp. 325-332 ◽  
Author(s):  
Shui-Ping Chang ◽  
Ching-Gung Wen

Nutrient release from land inundated by creation of a tropical reservoir (Nanhua Reservoir, Taiwan) is investigated. Both the magnitudes of nitrogen and phosphorus which might be released from inundated land are determined on the basis of measurements of biomass and nutrients content of terrestrial vegetation and the nutrients content of topsoil. The fresh biomass of the terrestrial vegetation was estimated at 48600 kg/ha, with an equivalent dry biomass of 15500 kg/ha. After complete decay following submergence, the terrestrial vegetation could potentially contribute 242 kg of nitrogen and 37 kg of phosphorus per hectare. The kinetics of nutrient release from topsoil is determined on a laboratory scale for 80 days, which showed that the phosphorus release rate is averaged at 5.25 mg TP/m2/day in anaerobic conditions and 1.34 mg TP/m2/day in aerobic conditions, also the nitrogen release rate is averaged at 78.31 mg TKN/m2/day in anaerobic condition and 35.71 mg TKN/m2/day in aerobic conditions. Based on the actual operation status of Nanhua Reservoir during the initial operation period of 21 months after construction (from August, 1993 to April, 19950 and nutrient release kinetics, the accumulated nutrient loads originating from the topsoil of the inundated land are about 81342 kg of nitrogen and 4701 kg of phosphorus.


1977 ◽  
Vol 16 (01) ◽  
pp. 30-35 ◽  
Author(s):  
N. Agha ◽  
R. B. R. Persson

SummaryGelchromatography column scanning has been used to study the fractions of 99mTc-pertechnetate, 99mTcchelate and reduced hydrolyzed 99mTc in preparations of 99mTc-EDTA(Sn) and 99mTc-DTPA(Sn). The labelling yield of 99mTc-EDTA(Sn) chelate was as high as 90—95% when 100 μmol EDTA · H4 and 0.5 (Amol SnCl2 was incubated with 10 ml 99mTceluate for 30—60 min at room temperature. The study of the influence of the pH-value on the fraction of 99mTc-EDTA shows that pH 2.8—2.9 gave the best labelling yield. In a comparative study of the labelling kinetics of 99mTc-EDTA(Sn) and 99mTc- DTPA(Sn) at different temperatures (7, 22 and 37°C), no significant influence on the reduction step was found. The rate constant for complex formation, however, increased more rapidly with increased temperature for 99mTc-DTPA(Sn). At room temperature only a few minutes was required to achieve a high labelling yield with 99mTc-DTPA(Sn) whereas about 60 min was required for 99mTc-EDTA(Sn). Comparative biokinetic studies in rabbits showed that the maximum activity in kidneys is achieved after 12 min with 99mTc-EDTA(Sn) but already after 6 min with 99mTc-DTPA(Sn). The long-term disappearance of 99mTc-DTPA(Sn) from the kidneys is about five times faster than that for 99mTc-EDTA(Sn).


2015 ◽  
Vol 66 (3) ◽  
pp. 265-274 ◽  
Author(s):  
Y Cao ◽  
ÉM Neif ◽  
W Li ◽  
J Coppens ◽  
N Filiz ◽  
...  

Polymers ◽  
2021 ◽  
Vol 13 (13) ◽  
pp. 2154
Author(s):  
Amir Hussain Idrisi ◽  
Abdel-Hamid I. Mourad ◽  
Muhammad M. Sherif

This paper presents a long-term experimental investigation of E-glass/epoxy composites’ durability exposed to seawater at different temperatures. The thermoset composite samples were exposed to 23 °C, 45 °C and 65 °C seawater for a prolonged exposure time of 11 years. The mechanical performance as a function of exposure time was evaluated and a strength-based technique was used to assess the durability of the composites. The experimental results revealed that the tensile strength of E-glass/epoxy composite was reduced by 8.2%, 29.7%, and 54.4% after immersion in seawater for 11 years at 23 °C, 45 °C, and 65 °C, respectively. The prolonged immersion in seawater resulted in the plasticization and swelling in the composite. This accelerated the rate of debonding between the fibers and matrix. The failure analysis was conducted to investigate the failure mode of the samples. SEM micrographs illustrated a correlation between the fiber/matrix debonding, potholing, fiber pull-out, river line marks and matrix cracking with deterioration in the tensile characteristics of the thermoset composite.


1990 ◽  
Vol 36 (5) ◽  
pp. 783-788 ◽  
Author(s):  
M N Nanjee ◽  
N E Miller

Abstract The concentration of high-density lipoprotein cholesterol (HDL-C) in plasma is now established as an independent risk factor for coronary heart disease, but more data are needed on the relative risk-predictive powers of different HDL subclasses. For epidemiologic and clinical purposes, isolation of HDL from other lipoproteins and separation of its two major subclasses, HDL2 and HDL3, are performed most conveniently by precipitation. Although storage of plasma is commonly necessary, little information is available on the long-term stability of HDL subclasses at different temperatures. Therefore, we quantified HDL-C, HDL2-C, and HDL3-C by dual precipitation with heparin-MnCl2/15-kDa dextran sulfate (H-M/DS) in samples of EDTA-plasma from 93 healthy subjects, after storage for one to 433 days at -20 degrees C, at -70 degrees C, or in liquid nitrogen (-196 degrees C). Fourteen samples (15%) were stored for a year or longer. At -20 degrees C, HDL-C decreased by 4.8% per year and HDL3-C decreased by 6.9% per year (P = 0.002 for both variables) relative to results obtained with samples stored in liquid nitrogen; total cholesterol, HDL2-C, and triglyceride did not change significantly at this temperature. When stored at -70 degrees C, none of the lipids showed any change relative to results obtained with liquid nitrogen. Thus, long-term storage of EDTA-plasma at -20 degrees C is unsuitable for subsequent quantification of HDL-C and its subclasses by H-M/DS dual precipitation. Storage at -70 degrees C is preferable, and is as reliable as storage in liquid nitrogen.


2021 ◽  
Author(s):  
Filippo Guzzon ◽  
Maraeva Gianella ◽  
Jose Alejandro Velazquez Juarez ◽  
Cesar Sanchez Cano ◽  
Denise E Costich

Abstract Background and Aims The long-term conservation of seeds of plant genetic resources is of key importance for food security and preservation of agrobiodiversity. Nevertheless, there is scarce information available about seed longevity of many crops under germplasm bank conditions. Methods Through germination experiments as well as the analysis of historical monitoring data, we studied the decline in viability manifested by 1000 maize (Zea mays subsp. mays) seed accessions conserved for an average of 48 years at the CIMMYT germplasm bank, the largest maize seedbank in the world, under two cold storage conditions: an active (–3 °C; intended for seed distribution) and a base conservation chamber (–15 °C; for long-term conservation). Key Results Seed lots stored in the active chamber had a significantly lower and more variable seed germination, averaging 81.4 %, as compared with the seed lots conserved in the base chamber, averaging 92.1 %. The average seed viability detected in this study was higher in comparison with that found in other seed longevity studies on maize conserved under similar conditions. A significant difference was detected in seed germination and longevity estimates (e.g. p85 and p50) among accessions. Correlating seed longevity with seed traits and passport data, grain type showed the strongest correlation, with flint varieties being longer lived than floury and dent types. Conclusions The more rapid loss of seed viability detected in the active chamber suggests that the seed conservation approach, based on the storage of the same seed accessions in two chambers with different temperatures, might be counterproductive for overall long-term conservation and that base conditions should be applied in both. The significant differences detected in seed longevity among accessions underscores that different viability monitoring and regeneration intervals should be applied to groups of accessions showing different longevity profiles.


Sensors ◽  
2019 ◽  
Vol 19 (2) ◽  
pp. 222 ◽  
Author(s):  
Lin Zhang ◽  
Wei Gao ◽  
Qian Li ◽  
Runbing Li ◽  
Zhanwei Yao ◽  
...  

The implementation principle of a typical three-pulse cold atom interference gyroscope is introduced in this paper. Based on its configuration and current research status, the problems of cold atom interference gyro are pointed out. The data-rate is insufficient, and it is difficult to achieve high dynamic measurement. Then, based on these two limitations, a novel design of the monitoring navigation system of the cold atom interference gyroscope (CAIG) and an intermediate-grade inertial measurement unit (IMU) was proposed to obtain the long-term position result without GPS signals, such as the Inertial Navigation System (INS) in underwater vehicles. While the CAIG was used as the external gyro, the bias of IMU and the misalignment angle between the CAIG-frame and the IMU-frame are obtained through filtering technique. The simulation test and field test demonstrated the improvements of the long-term positioning accuracy of the INS.


2019 ◽  
Vol 245 ◽  
pp. 725-734 ◽  
Author(s):  
Qin Sun ◽  
Shiming Ding ◽  
Musong Chen ◽  
Shuaishuai Gao ◽  
Guanghua Lu ◽  
...  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document