scholarly journals Seed longevity of maize conserved under germplasm bank conditions for up to 60 years

2021 ◽  
Author(s):  
Filippo Guzzon ◽  
Maraeva Gianella ◽  
Jose Alejandro Velazquez Juarez ◽  
Cesar Sanchez Cano ◽  
Denise E Costich

Abstract Background and Aims The long-term conservation of seeds of plant genetic resources is of key importance for food security and preservation of agrobiodiversity. Nevertheless, there is scarce information available about seed longevity of many crops under germplasm bank conditions. Methods Through germination experiments as well as the analysis of historical monitoring data, we studied the decline in viability manifested by 1000 maize (Zea mays subsp. mays) seed accessions conserved for an average of 48 years at the CIMMYT germplasm bank, the largest maize seedbank in the world, under two cold storage conditions: an active (–3 °C; intended for seed distribution) and a base conservation chamber (–15 °C; for long-term conservation). Key Results Seed lots stored in the active chamber had a significantly lower and more variable seed germination, averaging 81.4 %, as compared with the seed lots conserved in the base chamber, averaging 92.1 %. The average seed viability detected in this study was higher in comparison with that found in other seed longevity studies on maize conserved under similar conditions. A significant difference was detected in seed germination and longevity estimates (e.g. p85 and p50) among accessions. Correlating seed longevity with seed traits and passport data, grain type showed the strongest correlation, with flint varieties being longer lived than floury and dent types. Conclusions The more rapid loss of seed viability detected in the active chamber suggests that the seed conservation approach, based on the storage of the same seed accessions in two chambers with different temperatures, might be counterproductive for overall long-term conservation and that base conditions should be applied in both. The significant differences detected in seed longevity among accessions underscores that different viability monitoring and regeneration intervals should be applied to groups of accessions showing different longevity profiles.

2013 ◽  
Vol 61 (1) ◽  
pp. 1 ◽  
Author(s):  
A. D. Crawford ◽  
F. R. Hay ◽  
J. A. Plummer ◽  
R. J. Probert ◽  
K. J. Steadman

Long-term ex-situ seed storage under controlled conditions in gene banks has become an important tool for conserving threatened Australian plants; however, there is scant information about the seed longevity of most species. The aim of the present study was to determine whether the seed longevity of two contrasting Australian species could be modelled using the seed viability equation, and whether the universal temperature constants are applicable to these species. Seeds of Eucalyptus erythrocorys F.Muell. (Myrtaceae) and Xanthorrhoea preissii Endl. (Xanthorrhoeaceae) were aged at moisture contents ranging from 3.9 to 15.7% and temperatures between –20 and 60°C. Survival data were fitted to the seed viability equation in one step and the species constants for each species determined. Both E. erythrocorys and X. preissii seeds exhibited orthodox seed storage behaviour whose longevity could be modelled using the seed viability equation. The viability constants were KE = 8.81, CW = 4.97, CH = 0.0412 and CQ = 0.000379 for E. erythrocorys and KE = 8.77, CW = 5.29, CH = 0.0382 and CQ = 0.000473 for X. preissii. The universal temperature constants could not be used without a significant increase in error. The storage behaviour of these two Australian species is in keeping with that of orthodox species from around the world. Predictions are that E. erythrocorys will be long-lived under gene bank conditions, whereas X. preissii would be moderately long-lived. Current long-term gene bank storage conditions appear suitable for storage of these species; however, recommendations for short-term storage need to be re-evaluated.


Horticulturae ◽  
2021 ◽  
Vol 7 (11) ◽  
pp. 490
Author(s):  
Saeng Geul Baek ◽  
Jin Hyun Im ◽  
Myeong Ja Kwak ◽  
Cho Hee Park ◽  
Mi Hyun Lee ◽  
...  

This study aimed to determine the type of seed dormancy and to identify a suitable method of dormancy-breaking for an efficient seed viability test of Lysimachia coreana Nakai. To confirm the effect of gibberellic acid (GA3) on seed germination at different temperatures, germination tests were conducted at 5, 15, 20, 25, 20/10, and 25/15 °C (12/12 h, light/dark), using 1% agar with 100, 250, and 500 mg·L−1 GA3. Seeds were also stratified at 5 and 25/15 °C for 6 and 9 weeks, respectively, and then germinated at the same temperature. Seeds treated with GA3 demonstrated an increased germination rate (GR) at all temperatures except 5 °C. The highest GR was 82.0% at 25/15 °C and 250 mg·L−1 GA3 (4.8 times higher than the control (14.0%)). Additionally, GR increased after cold stratification, whereas seeds did not germinate after warm stratification at all temperatures. After cold stratification, the highest GR was 56.0% at 25/15 °C, which was lower than the GR observed after GA3 treatment. We hypothesized that L. coreana seeds have a non-deep physiological dormancy and concluded that 250 mg·L−1 GA3 treatment is more effective than cold stratification (9 weeks) for L. coreana seed-dormancy-breaking.


2018 ◽  
Vol 1 (1) ◽  
pp. 25-31
Author(s):  
P.K. Dewi Hayati

Soybeans undergo rapid deterioration due to its chemical composition and unfavourable storage conditions. The objective of the research was to determine the length period of seed hidration and dehydration which is integrated with rhizobateri to viability and vigor of deteriorated soybean seed.  A completely randomized design with four replicates were used in this experiment. Seeds were treated with varied combination of hydration period in a rhizobacteria suspension and followed by dehydration time.  Data were analysed using the F-test and significant differences were further tested with Least Significant Difference at the 5% level. Results showed that the hydration and dehydration period of seeds in a rhizobacteria suspension improved viability and vigor of seed which have 59.5% initial germination percentage. The improvement was 12.28%, 0.56, 25.4% and 1.4 days for standard germination test, vigor index, first count test percentage and T50, respectively. The hydration for 60 minutes followed by dehydration for 60 minutes gave the best results on seed viability and vigor.


2017 ◽  
Vol 3 (4) ◽  
pp. 46
Author(s):  
Arief Noor Rachmadiyanto ◽  
Peniwidiyanti . ◽  
Prima Wahyu Kusuma Hutabarat

<p class="Els-Abstract-text"><em>Brownlowia peltata </em>Benth. is a native tree from Borneo, in its germination problem was physical dormancy due to the hard pericarp of the fruit. The study aimed to evaluate five treatments for breaking the seed physical dormancy and the fruit description. The experiment was using Randomized Complete Block Design (RCBD) with four different temperatures of water immersion, a scarification, and control. The fruit of <em>B. peltata</em> was a woody follicle; belong to yellow green group 148 A in color; 29.64 mm in long; 21.62 mm in thickness; 29.86 mm in wide, with an average weight of 12.05 g. Hot water immersion treatment of 40 °C for 60 s; 60 °C for 60 s and 80 °C for 30 s could raise the fruit moisture content of 0.92 % to 1.04 %. There was a significant difference on germination rate coefficient and coefficient of uniformity of germination among treatments. The mature seed does not have a physical dormancy once the carpel splits and create a slit (fruit opening).</p><div><p class="Els-keywords"><strong>Keywords:</strong> <em>Brownlowia pellata </em>Benth; dormancy; fruit; seed; viability.</p></div>


2021 ◽  
Vol 99 (2) ◽  
pp. 279-290
Author(s):  
Andrea Mariel Jiménez-Vázquez ◽  
Alejandro Flores-Palacios ◽  
Alejandro Flores-Morales ◽  
Irene Perea-Arango ◽  
María del Carmen Gutiérrez ◽  
...  

Background: A high proportion of Asteraceae species are considered weeds, some of them have recognizable biological properties. To design production protocols and ex situ seed conservation programs is necessary to determine the effect of storage temperature on seed viability and longevity. It is known that cold temperatures maintain seed viability and thus prolong seed longevity. Hypotheses: The seeds of Aldama dentata, Verbesina virgata, Stevia origanoides and Roldana barba-johannis stored at low temperature (5 ºC) will have greater longevity than when stored at room temperature (16.45 ± 1.94 oC) and will decrease their viability as they age. Study site and dates: Seeds of the four Asteraceae were collected (November-December 2015) in The National Park “El Tepozteco”, Morelos, Mexico and in the “Chamilpa” campus of the Universidad Autónoma del Estado de Morelos. Methods: The monthly germination experiments (11) were implemented with seeds stored under both temperatures, germination (%) and mean germination time were registered to estimate seed longevity. The seed viability stored at room temperature was evaluated with the tetrazolium test. Results: Germination and viability decreased with seed age. Along the experiment, seed germination was similar at both storage temperatures. A. dentata and S. origanoides showed the highest germination but A. dentata alone reached the major seed viability. The oldest seeds germinated faster. Conclusions: Seed longevity of all the species exceeded one year. For propagation purposes, it is recommended to use seeds between 8 and 9 months of age, when their germination and viability are the highest.


Materials ◽  
2019 ◽  
Vol 12 (4) ◽  
pp. 684
Author(s):  
Ruifeng Li ◽  
Daoguo Yang ◽  
Ping Zhang ◽  
Fanfan Niu ◽  
Miao Cai ◽  
...  

Changes in the elasticity modulus of an epoxy molding compound (EMC), an electronic packaging polymer, under high-temperature air storage conditions, are discussed in this study. The elasticity modulus of EMC had two different compositions (different filling contents) under different temperatures (175, 200, and 225 °C) and aging times (100, 500, and 1500 h), which were analyzed by using dynamic mechanic analysis technology. The results revealed that the elasticity modulus increased in the thermal aging process, with an increase in the temperature and the aging time. The increments of the glassy and rubbery states were similar. However, the growing rate was significantly different, and the growth of the rubbery state was significantly higher than that of the glassy state. The filling content influenced the degree of aging of the materials significantly. At a low filling content, long-term aging under high temperatures completely changed the material structure, and the mechanical properties of the polymer were reduced.


2014 ◽  
Vol 20 (2) ◽  
pp. 201 ◽  
Author(s):  
Daniel Rojas-Tapias ◽  
Oriana Ortega Sierra ◽  
Diego Rivera Botía ◽  
Ruth Bonilla

We studied the preservation of Azotobacter chroococcum C26 using three dry polymers: carrageenin, sodium alginate, and HPMC, using a method of accelerated degradation. Bacterial viability, as response variable, was measured at three temperatures in four different times, which was followed by calculation of bacterial degradation rates. Results showed that temperature, time of storage, and protective agent influenced both viability and degradation rates (P;lt;0.05). We observed, using the Arrhenius thermodynamic model, that the use of polymers increased the activation energy of bacterial degradation compared to control. We obtained thermodynamic models for each polymer, based on the Arrhenius equation, which predicted the required time for thermal degradation of the cells at different temperatures. Analysis of the models showed that carrageenin was the best polymer to preserve A. chroococcum C26 since ~ 900 days are required at 4 ºC to reduce its viability in two log units. We conclude, therefore, that long-term preservation of A. chroococcum C26 using dry polymers is suitable under adequate preservation and storage conditions.


2010 ◽  
Vol 34 (3) ◽  
pp. 443-449 ◽  
Author(s):  
Flavio Nunes Ramos ◽  
Antonio Carlos Silva de Andrade

The purpose of this study was to examine if germination is a critical phase on Enterolobium glaziovii regeneration. Hence, the germinative response of E. glaziovii seeds was investigated in relation to some of the main environmental factors (temperature, light and water stress) to which its seeds are subjected in the forest, as well as its dormancy and the longevity of its burial seeds. According to our results, its seeds may be regarded as photoblastic neutral. They do not need alternating temperatures to germinate and can germinate under a broad range of water stress. However, only about 10% of E. glaziovii seeds remain viable after one year. In other words, the annual fruiting, instead seed longevity, seems to maintain the long-term seed availability of this species. Consequently, the seed longevity could be a critical phase of E. glaziovii germination.


HortScience ◽  
1999 ◽  
Vol 34 (3) ◽  
pp. 487B-487
Author(s):  
Hae-Jeen Bang ◽  
Soo-Jung Hwang ◽  
Hyun-Sook Ham ◽  
Jung-Myung Lee

The effectiveness of solid matrix priming (SMP) and seed brushing was further evaluated by using an thermo-gradient table (Seed Processing, Holland) set at 10 different temperatures from 12 to 30 °C. Intact or brushed seeds of gourd (Lagenaria siceraria) were primed with Micorocel E (Celite Corp.) at 25 °C for 3 days in the mixture of 10 seed: 1 Microcel E: 3 water, by weight, and the primed seeds were dried again for long-term storage. SMP treatment significantly increased earlier seed germination at all temperatures. However, the difference in seed germination rate between intact and SMP-treated seeds was most pronounced at somewhat lower temperatures of 18-22 °C. SMP-treated seed showed about 20% final germination rate at 12 °C, whereas intact seeds did not germinate at all. Seed brushing treatment itself did not influenced the germination rate. However, brushing treatment before SMP treatment significantly increased the SMP effect. Combined use of chemicals in solution further increased the early germination. Details of various seed treatment methods will be presented.


Sign in / Sign up

Export Citation Format

Share Document