scholarly journals Hourly and Day Ahead Power Prediction of Building Integrated Semitransparent Photovoltaic System

2021 ◽  
Vol 2021 ◽  
pp. 1-8
Author(s):  
S. Kaliappan ◽  
R. Saravanakumar ◽  
Alagar Karthick ◽  
P. Marish Kumar ◽  
V. Venkatesh ◽  
...  

The building integrated semitransparent photovoltaic (BISTPV) system is an emerging technology which replaces the conventional building material envelopes and roof. The performance prediction of the BISTPV system places a vital role in the reduction of the energy consumption in the building. In this work, the artificial neural network (ANN) is used to predict the performance of this system by optimizing the important parameter of the feature selection. The Elman neural network (EN) algorithm, feed forward neural network (FN), and generalized regression neural network model (GRN) are investigated in this study. The performance metrics of the errors are analysed such as the root mean square error (RMSE), mean absolute percentage error (MAPE), and mean square root (MSE). According to the findings, the model behaves consistently at the specified time and place in the experiment. Forecasters utilizing neural network models will have better accuracy if they use techniques like EN, FFN, and GRN having the RMSE of 0.25, 0.37, and 0.45, respectively.

Author(s):  
Emmanuel Gbenga Dada ◽  
Hurcha Joseph Yakubu ◽  
David Opeoluwa Oyewola

Rainfall prediction is an important meteorological problem that can greatly affect humanity in areas such as agriculture production, flooding, drought, and sustainable management of water resources. The dynamic and nonlinear nature of the climatic conditions have made it impossible for traditional techniques to yield satisfactory accuracy for rainfall prediction. As a result of the sophistication of climatic processes that produced rainfall, using quantitative techniques to predict rainfall is a very cumbersome task. The paper proposed four non-linear techniques such as Artificial Neural Networks (ANN) for rainfall prediction. ANN has the capacity to map different input and output patterns. The Feed Forward Neural Network (FFNN), Cascade Forward Neural Network (CFNN), Recurrent Neural Network (RNN), and Elman Neural Network (ENN) were used to predict rainfall. The dataset used for this work contains some meteorological variables such as temperature, wind speed, humidity, rainfall, visibility, and others for the year 2015-2019. Simulation results indicated that of all the proposed Neural Network (NN) models, the Elman NN model produced the best performance. We also found out that Elman NN has the best performance for the year 2018 (having the lowest RMSE, MSE, and MAE of 6.360, 40.45, and 0.54 respectively). The results indicated that NN algorithms are robust, dependable, and reliable algorithms that can be used for daily, monthly, or yearly rainfall prediction.


2019 ◽  
Vol 8 (4) ◽  
pp. 6177-6181

Hydropower scheme would experience issue relating to high flooding especially at low lying area due to extreme raining season. To mitigate the potential risk of flooding and improve the hydroelectric regulation, a flow prediction is needed to estimate the discharge of water flow at hydroelectric reservoirs. Artificial Neural Network (ANN) model were used in this research to forecast the water discharge of hydroelectric station. The discharge flow predictions were made based on fore bay elevation, inflow and the discharge of water flow. Elman Neural Network architecture was selected as ANN method and its performance was evaluated by considering the number of hidden nodes and training methods. ANN model performance were assessed using performance metrics such as Root Mean Square Error (RMSE), Mean Square Error (MSE), Mean Absolute Error (MAE) and Sum Square Error (SSE). The result indicate that ANN model showed the best applicability for discharge prediction with small performance metric.


2021 ◽  
Vol 4 (1) ◽  
pp. 9 ◽  
Author(s):  
Zexin Hu ◽  
Yiqi Zhao ◽  
Matloob Khushi

Predictions of stock and foreign exchange (Forex) have always been a hot and profitable area of study. Deep learning applications have been proven to yield better accuracy and return in the field of financial prediction and forecasting. In this survey, we selected papers from the Digital Bibliography & Library Project (DBLP) database for comparison and analysis. We classified papers according to different deep learning methods, which included Convolutional neural network (CNN); Long Short-Term Memory (LSTM); Deep neural network (DNN); Recurrent Neural Network (RNN); Reinforcement Learning; and other deep learning methods such as Hybrid Attention Networks (HAN), self-paced learning mechanism (NLP), and Wavenet. Furthermore, this paper reviews the dataset, variable, model, and results of each article. The survey used presents the results through the most used performance metrics: Root Mean Square Error (RMSE), Mean Absolute Percentage Error (MAPE), Mean Absolute Error (MAE), Mean Square Error (MSE), accuracy, Sharpe ratio, and return rate. We identified that recent models combining LSTM with other methods, for example, DNN, are widely researched. Reinforcement learning and other deep learning methods yielded great returns and performances. We conclude that, in recent years, the trend of using deep-learning-based methods for financial modeling is rising exponentially.


Author(s):  
Michael Štencl ◽  
Ondřej Popelka ◽  
Jiří Šťastný

The aim of this article is comparison of accuracy level of forecasted values of several artificial neural network models. The comparison is performed on datasets of Czech household consumption values. Several statistical models often resolve this task with more or fewer restrictions. In previous work where models’ input conditions were not so strict and model with missing data was used (the time series didn’t contain many values) we have obtained comparably good results with artificial neural networks. Two views – practical and theoretical, motivate the purpose of this study. Forecasting models for medium term prognosis of the main trends of Czech household consumption is part of the faculty research design grant MSM 6215648904/03/02 (Sub-task 5.3) which defines the practical purpose. Testing of nonlinear autoregressive artificial neural network model compared with feed-forward neural network and radial basis function neural network defines the theoretical purpose. The performance metrics of the models were evaluated using a combination of common error metrics, namely Correlation Coefficient and Mean Square Error, together with the number of epochs and/or main prediction error.


Author(s):  
Tshilidzi Marwala

In this chapter, a classifier technique that is based on a missing data estimation framework that uses autoassociative multi-layer perceptron neural networks and genetic algorithms is proposed. The proposed method is tested on a set of demographic properties of individuals obtained from the South African antenatal survey and compared to conventional feed-forward neural networks. The missing data approach based on the autoassociative network model proposed gives an accuracy of 92%, when compared to the accuracy of 84% obtained from the conventional feed-forward neural network models. The area under the receiver operating characteristics curve for the proposed autoassociative network model is 0.86 compared to 0.80 for the conventional feed-forward neural network model. The autoassociative network model proposed in this chapter, therefore, outperforms the conventional feed-forward neural network models and is an improved classifier. The reasons for this are: (1) the propagation of errors in the autoassociative network model is more distributed while for a conventional feed-forward network is more concentrated; and (2) there is no causality between the demographic properties and the HIV and, therefore, the HIV status does change the demographic properties and vice versa. Therefore, it is better to treat the problem as a missing data problem rather than a feed-forward problem.


Author(s):  
Joarder Kamruzzaman ◽  
Ruhul A. Sarker ◽  
Rezaul K. Begg

In today’s global market economy, currency exchange rates play a vital role in national economy of the trading nations. In this chapter, we present an overview of neural network-based forecasting models for foreign currency exchange (forex) rates. To demonstrate the suitability of neural network in forex forecasting, a case study on the forex rates of six different currencies against the Australian dollar is presented. We used three different learning algorithms in this case study, and a comparison based on several performance metrics and trading profitability is provided. Future research direction for enhancement of neural network models is also discussed.


2020 ◽  
Vol 19 (02) ◽  
pp. 447-468
Author(s):  
Oğuzhan Kivrak ◽  
Cüneyt Akar

The main goal of this study is to investigate whether social media, as a recent communication channel, has an impact on customer lifetime value (CLV). No studies have been done in Turkey with similar purposes in the telecommunication sector. To reach this goal, there has been an attempt to develop both artificial neural network models and sector-specific applicable models. Four years of data between 2011 and 2014 belonging to customers in the telecommunication sector who have a Twitter account are used in this study. The CLV is modeled through radial basis function (RBF), multilayer perceptron (MLP), and Elman neural network approaches, and the performance of such models is compared. According to the findings, calculated CLV error values are at an acceptable range in all formed models. Additionally, it is determined that the CLV was calculated with a lower error value in models where social media variables were used. The Elman neural network is determined to perform better compared to RBF and MLP.


2014 ◽  
Vol 536-537 ◽  
pp. 470-475
Author(s):  
Ye Chen

Due to the features of being fluctuant, intermittent, and stochastic of wind power, interconnection of large capacity wind farms with the power grid will bring about impact on the safety and stability of power systems. Based on the real-time wind power data, wind power prediction model using Elman neural network is proposed. At the same time in order to overcome the disadvantages of the Elman neural network for easily fall into local minimum and slow convergence speed, this paper put forward using the GA algorithm to optimize the weight and threshold of Elman neural network. Through the analysis of the measured data of one wind farm, shows that the forecasting method can improve the accuracy of the wind power prediction, so it has great practical value.


Sign in / Sign up

Export Citation Format

Share Document