scholarly journals Fifteen Limit Cycles Bifurcating from a Perturbed Cubic Center

2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Amor Menaceur ◽  
Mufda Alrawashdeh ◽  
Sahar Ahmed Idris ◽  
Hala Abd-Elmageed

In this work, we study the bifurcation of limit cycles from the period annulus surrounding the origin of a class of cubic polynomial differential systems; when they are perturbed inside the class of all polynomial differential systems of degree six, we obtain at most fifteenth limit cycles by using the averaging theory of first order.

2021 ◽  
Vol 39 (4) ◽  
pp. 181-197
Author(s):  
Amour Menaceur ◽  
Salah Boulaaras

The main purpose of this paper is to study the number of limit cycles of sextic polynomial differential systems (SPDS) via the averaging theory which is an extension to the study of cubic polynomial vector fields in (Nonlinear Analysis 66 (2007), 1707--1721), where we provide an accurate upper bound of the maximum number of limit cycles that SPDS can have bifurcating from the period annulus surrounding the origin of a class of cubic system.


2016 ◽  
Vol 2016 ◽  
pp. 1-11
Author(s):  
Ziguo Jiang

We study the number of limit cycles for the quadratic polynomial differential systemsx˙=-y+x2,y˙=x+xyhaving an isochronous center with continuous and discontinuous cubic polynomial perturbations. Using the averaging theory of first order, we obtain that 3 limit cycles bifurcate from the periodic orbits of the isochronous center with continuous perturbations and at least 7 limit cycles bifurcate from the periodic orbits of the isochronous center with discontinuous perturbations. Moreover, this work shows that the discontinuous systems have at least 4 more limit cycles surrounding the origin than the continuous ones.


2014 ◽  
Vol 24 (03) ◽  
pp. 1450035 ◽  
Author(s):  
Shimin Li ◽  
Yulin Zhao

In this paper, we bound the number of limit cycles for a class of cubic reversible isochronous system inside the class of all cubic polynomial differential systems. By applying the averaging method of second order to this system, it is proved that at most eight limit cycles can bifurcate from the period annulus. Moreover, this bound is sharp.


2018 ◽  
Vol 28 (05) ◽  
pp. 1850063 ◽  
Author(s):  
Shiyou Sui ◽  
Liqin Zhao

In this paper, we consider the number of zeros of Abelian integral for the system [Formula: see text], [Formula: see text], where [Formula: see text], [Formula: see text], and [Formula: see text] are arbitrary polynomials of degree [Formula: see text]. We obtain that [Formula: see text] if [Formula: see text] and [Formula: see text] if [Formula: see text], where [Formula: see text] is the maximum number of limit cycles bifurcating from the period annulus up to the first order in [Formula: see text]. So, the bounds for [Formula: see text] or [Formula: see text], [Formula: see text], [Formula: see text] are exact.


2015 ◽  
Vol 25 (10) ◽  
pp. 1550131 ◽  
Author(s):  
Fangfang Jiang ◽  
Junping Shi ◽  
Jitao Sun

In this paper, we investigate the number of limit cycles for a class of discontinuous planar differential systems with multiple sectors separated by many rays originating from the origin. In each sector, it is a smooth generalized Liénard polynomial differential system x′ = -y + g1(x) + f1(x)y and y′ = x + g2(x) + f2(x)y, where fi(x) and gi(x) for i = 1, 2 are polynomials of variable x with any given degree. By the averaging theory of first-order for discontinuous differential systems, we provide the criteria on the maximum number of medium amplitude limit cycles for the discontinuous generalized Liénard polynomial differential systems. The upper bound for the number of medium amplitude limit cycles can be attained by specific examples.


2016 ◽  
Vol 2016 ◽  
pp. 1-5
Author(s):  
Zouhair Diab ◽  
Amar Makhlouf

We perturb the differential systemx˙1=-x2(1+x1),x˙2=x1(1+x1), andx˙k=0fork=3,…,dinside the class of all polynomial differential systems of degreeninRd, and we prove that at mostnd-1limit cycles can be obtained for the perturbed system using the first-order averaging theory.


2017 ◽  
Vol 27 (10) ◽  
pp. 1750157 ◽  
Author(s):  
Yunfei Gao ◽  
Linping Peng ◽  
Changjian Liu

Perturbing the following systems [Formula: see text] having a linear center with two vertical straight lines ([Formula: see text]) of singularity inside the class of all piecewise polynomials of degree [Formula: see text], we give the estimate of the maximum number [Formula: see text] of limit cycles bifurcating from the period annulus around the center based on the argument principle and the first order averaging theory. It shows that [Formula: see text] is at least [Formula: see text] bigger than the maximum number of limit cycles bifurcating from the period annulus around the linear center with two parallel straight lines of singularity in [Li & Liu, 2015].


2018 ◽  
Vol 18 (1) ◽  
pp. 183-193 ◽  
Author(s):  
Jaume Giné ◽  
Jaume Llibre ◽  
Claudia Valls

AbstractIn this paper we characterize all cubic polynomial differential systems in the plane having two circles as invariant algebraic limit cycles.


Complexity ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-6
Author(s):  
Amor Menaceur ◽  
Salah Mahmoud Boulaaras ◽  
Amar Makhlouf ◽  
Karthikeyan Rajagobal ◽  
Mohamed Abdalla

By means of the averaging method of the first order, we introduce the maximum number of limit cycles which can be bifurcated from the periodic orbits of a Hamiltonian system. Besides, the perturbation has been used for a particular class of the polynomial differential systems.


Sign in / Sign up

Export Citation Format

Share Document