scholarly journals Assessing the Quality of Calyx of Physalis alkekengi L. var. franchetii Based on Quantitative Analysis of Q-Marker Combined with Chemometrics and Machine Learning Algorithms

2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Meiqi Liu ◽  
Ziying Qiu ◽  
Xiaoran Zhao ◽  
Lili Sun ◽  
Lizhi Wang ◽  
...  

Physalis alkekengi L. var. franchetii (PALF) is a traditional Chinese medicine, which is well known for its antimicrobial, anti-inflammatory, antipyretic, and expectorant properties. Its fruits and fruiting calyxes are used as dietary supplements and traditional herbs in China. However, the quality of calyxes is uneven, and it is prone to getting moldy or moth-eaten during storage. High-performance liquid chromatography (HPLC) fingerprints and multivariate chemometric methods were combined to evaluate quality, and three representative compounds were chosen as the quality markers (Q-markers). Hierarchical cluster analysis (HCA) and principal component analysis (PCA) provided a clear discrimination of PALF samples. Through further verification by partial least squares discriminant analysis (PLS-DA), backpropagation artificial neural network (BP-ANN), machine learning, and combination with the determination of the content, biology, and pharmacology effect judgment, galuteolin, rutin, and physalin O could be used as Q-markers that their contents affect the quality of PALF grade evaluation. A simple method was established to rapidly assess the quality of PALF that is important for its clinical application and storage and provide a reference for evaluating the quality of materials used in Chinese medicine.

2016 ◽  
Vol 2016 ◽  
pp. 1-10 ◽  
Author(s):  
Ke Pei ◽  
Hao Cai ◽  
Yu Duan ◽  
Feng-Xian Qiao ◽  
Si-Cong Tu ◽  
...  

An accurate and reliable method of high-performance liquid chromatographic fingerprint combining with multi-ingredient determination was developed and validated to evaluate the influence of sulfur-fumigatedPaeoniae Radix Albaon the quality and chemical constituents of Si Wu Tang. Multivariate data analysis including hierarchical cluster analysis and principal component analysis, which integrated with high-performance liquid chromatographic fingerprint and multi-ingredient determination, was employed to evaluate Si Wu Tang in a more objective and scientific way. Interestingly, in this paper, a total of 37 and 36 peaks were marked as common peaks in ten batches of Si Wu Tang containing sun-driedPaeoniae Radix Albaand ten batches of Si Wu Tang containing sulfur-fumigatedPaeoniae Radix Alba, respectively, which indicated the changed fingerprint profile of Si Wu Tang when containing sulfur-fumigated herb. Furthermore, the results of simultaneous determination for multiple ingredients showed that the contents of albiflorin and paeoniflorin decreased significantly (P<0.01) and the contents of gallic acid andZ-ligustilide decreased to some extent at the same time when Si Wu Tang contained sulfur-fumigatedPaeoniae Radix Alba. Therefore, sulfur-fumigation processing may have great influence on the quality of Chinese herbal prescription.


2020 ◽  
Vol 17 (1) ◽  
pp. 47-56
Author(s):  
Shun Liu ◽  
Xun Wang ◽  
Kaiping Zou ◽  
Wei Liu ◽  
Cunyu Li ◽  
...  

Background: Zishen Tongguan (ZSTG) capsules were prepared at the Affiliated Hospital of Nanjing University of Chinese Medicine and have been proven to be clinically effective for treating pyelonephritis and benign prostatic hyperplasia. However, the quality standards are not ideal; a comprehensive study of the “quality markers” (Q-markers), the chemicals inherent in traditional Chinese medicine and its preparations, has not been carried out. Experimental Methods: In this paper, a sensitive and specific ultra-high-performance liquid chromatographictandem mass spectrometry (UHPLC-MS/MS) method was developed for the simultaneous determination of eight potential Q-markers of ZSTG, including timosaponin A3, berberine, jatrorrhizine, phellodendrine, palmatine, mangiferin, neomangiferin, and timosaponin BII. A Kromasil 100-3.5 C18 column was used with a mobile phase of 0.2% formic acid with acetonitrile, and gradient elution at a flow rate of 0.2 mL/min was achieved in 13 minutes and used for separation. Detection was performed in positive/negative mode with multiple reaction monitoring (MRM). Results: The analytical method was validated in terms of the sensitivity, linearity, accuracy, precision, repeatability, stability and recovery. The method established here was successfully applied to study the potential Q-markers in 8 batches of commercial samples, which demonstrated its use in improving the quality control of ZSTG. Conclusion: The developed method had high repeatability and accuracy and was suitable for the simultaneous analysis of multiple Q-markers, which may provide a new basis for the comprehensive assessment and overall quality control of ZSTG.


Sensors ◽  
2021 ◽  
Vol 21 (2) ◽  
pp. 656
Author(s):  
Xavier Larriva-Novo ◽  
Víctor A. Villagrá ◽  
Mario Vega-Barbas ◽  
Diego Rivera ◽  
Mario Sanz Rodrigo

Security in IoT networks is currently mandatory, due to the high amount of data that has to be handled. These systems are vulnerable to several cybersecurity attacks, which are increasing in number and sophistication. Due to this reason, new intrusion detection techniques have to be developed, being as accurate as possible for these scenarios. Intrusion detection systems based on machine learning algorithms have already shown a high performance in terms of accuracy. This research proposes the study and evaluation of several preprocessing techniques based on traffic categorization for a machine learning neural network algorithm. This research uses for its evaluation two benchmark datasets, namely UGR16 and the UNSW-NB15, and one of the most used datasets, KDD99. The preprocessing techniques were evaluated in accordance with scalar and normalization functions. All of these preprocessing models were applied through different sets of characteristics based on a categorization composed by four groups of features: basic connection features, content characteristics, statistical characteristics and finally, a group which is composed by traffic-based features and connection direction-based traffic characteristics. The objective of this research is to evaluate this categorization by using various data preprocessing techniques to obtain the most accurate model. Our proposal shows that, by applying the categorization of network traffic and several preprocessing techniques, the accuracy can be enhanced by up to 45%. The preprocessing of a specific group of characteristics allows for greater accuracy, allowing the machine learning algorithm to correctly classify these parameters related to possible attacks.


Foods ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 1411
Author(s):  
José Luis P. Calle ◽  
Marta Ferreiro-González ◽  
Ana Ruiz-Rodríguez ◽  
Gerardo F. Barbero ◽  
José Á. Álvarez ◽  
...  

Sherry wine vinegar is a Spanish gourmet product under Protected Designation of Origin (PDO). Before a vinegar can be labeled as Sherry vinegar, the product must meet certain requirements as established by its PDO, which, in this case, means that it has been produced following the traditional solera and criadera ageing system. The quality of the vinegar is determined by many factors such as the raw material, the acetification process or the aging system. For this reason, mainly producers, but also consumers, would benefit from the employment of effective analytical tools that allow precisely determining the origin and quality of vinegar. In the present study, a total of 48 Sherry vinegar samples manufactured from three different starting wines (Palomino Fino, Moscatel, and Pedro Ximénez wine) were analyzed by Fourier-transform infrared (FT-IR) spectroscopy. The spectroscopic data were combined with unsupervised exploratory techniques such as hierarchical cluster analysis (HCA) and principal component analysis (PCA), as well as other nonparametric supervised techniques, namely, support vector machine (SVM) and random forest (RF), for the characterization of the samples. The HCA and PCA results present a clear grouping trend of the vinegar samples according to their raw materials. SVM in combination with leave-one-out cross-validation (LOOCV) successfully classified 100% of the samples, according to the type of wine used for their production. The RF method allowed selecting the most important variables to develop the characteristic fingerprint (“spectralprint”) of the vinegar samples according to their starting wine. Furthermore, the RF model reached 100% accuracy for both LOOCV and out-of-bag (OOB) sets.


2009 ◽  
Author(s):  
Naotoshi Fujita ◽  
Asumi Yamazaki ◽  
Katsuhiro Ichikawa ◽  
Yoshie Kodera

2021 ◽  
Vol 22 (Supplement_1) ◽  
Author(s):  
M Omer ◽  
A Amir-Khalili ◽  
A Sojoudi ◽  
T Thao Le ◽  
S A Cook ◽  
...  

Abstract Funding Acknowledgements Type of funding sources: Public grant(s) – National budget only. Main funding source(s): SmartHeart EPSRC programme grant (www.nihr.ac.uk), London Medical Imaging and AI Centre for Value-Based Healthcare Background Quality measures for machine learning algorithms include clinical measures such as end-diastolic (ED) and end-systolic (ES) volume, volumetric overlaps such as Dice similarity coefficient and surface distances such as Hausdorff distance. These measures capture differences between manually drawn and automated contours but fail to capture the trust of a clinician to an automatically generated contour. Purpose We propose to directly capture clinicians’ trust in a systematic way. We display manual and automated contours sequentially in random order and ask the clinicians to score the contour quality. We then perform statistical analysis for both sources of contours and stratify results based on contour type. Data The data selected for this experiment came from the National Health Center Singapore. It constitutes CMR scans from 313 patients with diverse pathologies including: healthy, dilated cardiomyopathy (DCM), hypertension (HTN), hypertrophic cardiomyopathy (HCM), ischemic heart disease (IHD), left ventricular non-compaction (LVNC), and myocarditis. Each study contains a short axis (SAX) stack, with ED and ES phases manually annotated. Automated contours are generated for each SAX image for which manual annotation is available. For this, a machine learning algorithm trained at Circle Cardiovascular Imaging Inc. is applied and the resulting predictions are saved to be displayed in the contour quality scoring (CQS) application. Methods: The CQS application displays manual and automated contours in a random order and presents the user an option to assign a contour quality score 1: Unacceptable, 2: Bad, 3: Fair, 4: Good. The UK Biobank standard operating procedure is used for assessing the quality of the contoured images. Quality scores are assigned based on how the contour affects clinical outcomes. However, as images are presented independent of spatiotemporal context, contour quality is assessed based on how well the area of the delineated structure is approximated. Consequently, small contours and small deviations are rarely assigned a quality score of less than 2, as they are not clinically relevant. Special attention is given to the RV-endo contours as often, mostly in basal images, two separate contours appear. In such cases, a score of 3 is given if the two disjoint contours sufficiently encompass the underlying anatomy; otherwise they are scored as 2 or 1. Results A total of 50991 quality scores (24208 manual and 26783 automated) are generated by five expert raters. The mean score for all manual and automated contours are 3.77 ± 0.48 and 3.77 ± 0.52, respectively. The breakdown of mean quality scores by contour type is included in Fig. 1a while the distribution of quality scores for various raters are shown in Fig. 1b. Conclusion We proposed a method of comparing the quality of manual versus automated contouring methods. Results suggest similar statistics in quality scores for both sources of contours. Abstract Figure 1


2021 ◽  
Vol 218 ◽  
pp. 44-51
Author(s):  
D. Venkata Vara Prasad ◽  
Lokeswari Y. Venkataramana ◽  
P. Senthil Kumar ◽  
G. Prasannamedha ◽  
K. Soumya ◽  
...  

Author(s):  
Amudha P. ◽  
Sivakumari S.

In recent years, the field of machine learning grows very fast both on the development of techniques and its application in intrusion detection. The computational complexity of the machine learning algorithms increases rapidly as the number of features in the datasets increases. By choosing the significant features, the number of features in the dataset can be reduced, which is critical to progress the classification accuracy and speed of algorithms. Also, achieving high accuracy and detection rate and lowering false alarm rates are the major challenges in designing an intrusion detection system. The major motivation of this work is to address these issues by hybridizing machine learning and swarm intelligence algorithms for enhancing the performance of intrusion detection system. It also emphasizes applying principal component analysis as feature selection technique on intrusion detection dataset for identifying the most suitable feature subsets which may provide high-quality results in a fast and efficient manner.


2020 ◽  
Vol 9 (9) ◽  
pp. 507
Author(s):  
Sanjiwana Arjasakusuma ◽  
Sandiaga Swahyu Kusuma ◽  
Stuart Phinn

Machine learning has been employed for various mapping and modeling tasks using input variables from different sources of remote sensing data. For feature selection involving high- spatial and spectral dimensionality data, various methods have been developed and incorporated into the machine learning framework to ensure an efficient and optimal computational process. This research aims to assess the accuracy of various feature selection and machine learning methods for estimating forest height using AISA (airborne imaging spectrometer for applications) hyperspectral bands (479 bands) and airborne light detection and ranging (lidar) height metrics (36 metrics), alone and combined. Feature selection and dimensionality reduction using Boruta (BO), principal component analysis (PCA), simulated annealing (SA), and genetic algorithm (GA) in combination with machine learning algorithms such as multivariate adaptive regression spline (MARS), extra trees (ET), support vector regression (SVR) with radial basis function, and extreme gradient boosting (XGB) with trees (XGbtree and XGBdart) and linear (XGBlin) classifiers were evaluated. The results demonstrated that the combinations of BO-XGBdart and BO-SVR delivered the best model performance for estimating tropical forest height by combining lidar and hyperspectral data, with R2 = 0.53 and RMSE = 1.7 m (18.4% of nRMSE and 0.046 m of bias) for BO-XGBdart and R2 = 0.51 and RMSE = 1.8 m (15.8% of nRMSE and −0.244 m of bias) for BO-SVR. Our study also demonstrated the effectiveness of BO for variables selection; it could reduce 95% of the data to select the 29 most important variables from the initial 516 variables from lidar metrics and hyperspectral data.


Sign in / Sign up

Export Citation Format

Share Document