Attenuation Law of Train-Induced Vibration Response of Subgrade in Beijing–Harbin Railway
To investigate environmental vibration in the case of railway subgrade in seasonally frozen regions, field experiments were conducted on the Beijing–Harbin railway subgrade of China in autumn and winter. Vibration acceleration and vibration level attenuation law were analysed based on monitoring results. Accordingly, the influence of the subgrade freeze-thaw states, vehicle load, train formation, and running speed on the subgrade surface environmental vibration was analysed. The vibration response of the subgrade decreased with an increase in the distance from the track. The attenuation curve of the vibration acceleration can be fitted using the negative exponential function, and the attenuation curve of the vibration level can be fitted using the linear function. Additionally, the subgrade vibration response during the frozen period was greater than that during the unfrozen period owing to increased strength and rigidity and decreased damping ratio after subgrade freezing, which increased the vibration response. Moreover, the vibration intensity of the subgrade increased with increase in the vehicle load and formation and decreased with an increase in the driving speed within a particular speed range. The findings of this study provide an objective basis for railway subgrade design and disaster assessment in cold regions of China.