scholarly journals Finite-Time Passivity of Stochastic Coupled Complex Networks

2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Xunwu Yin ◽  
Min Cao

The finite-time passivity problem is, respectively, investigated for stochastic coupled complex networks (SCCNs) with and without time-varying delay. Firstly, we present several new concepts about finite-time passivity in the sense of expectation on the basis of existing passivity definition. By designing appropriate controllers, the finite-time passivity of SCCNs with and without time-varying delay is obtained. In addition, the definition of finite-time synchronization in the sense of expectation is proposed. Under some sufficient conditions and designed controllers, finite-time passivity derives finite-time synchronization. Finally, two examples are given to demonstrate the effectiveness of finite-time passive and synchronization criteria.

Complexity ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-25
Author(s):  
Ying Liu ◽  
Fei Chen ◽  
Bin Yang ◽  
Xin Wang ◽  
Weiming Wang

In this paper, we investigate the finite-time synchronization control for a class of nonlinear coupled multiweighted complex networks (NCMWCNs) with Markovian switching and time-varying delay analytically and quantitatively. The value of this study lies in four aspects: First, it designs the finite-time synchronization controller to make the NCMWCNs with Markovian switching and time-varying delay achieve global synchronization in finite time. Second, it derives two kinds of finite-time estimation approaches by analyzing the impact of the nonlinearity of nonlinear coupled function on synchronization dynamics and synchronization convergence time. Third, it presents the relationship between Markovian switching parameters and synchronization problems of subsystems and the overall system. Fourth, it provides some numerical examples to demonstrate the effectiveness of the theoretical results.


2019 ◽  
Vol 2019 ◽  
pp. 1-12
Author(s):  
Lixiang Li ◽  
Qingbiao Liu ◽  
Tao Li

This paper utilizes nonlinear adaptive feedback controller to make the complex multilinks networks with perturbations and time-varying delays achieve the finite-time synchronization. By designing nonlinear controllers, we use suitable Lyapunov functions and sufficient conditions to guarantee the finite-time synchronization between the drive system and the response system in terms of adaptive control. Several novel and useful finite-time synchronization criteria are accurately derived based on linear matrix inequality, Kronecker product, inequality analytical technique, and finite-time stability theory. Finally, numerical examples are given to demonstrate the validity and the effectiveness of our theoretical results.


2014 ◽  
Vol 2014 ◽  
pp. 1-11 ◽  
Author(s):  
Shuo Li ◽  
Zhengrong Xiang ◽  
Hamid Reza Karimi

This paper is concerned with the problem of finite-timel1-gain control for positive switched systems with time-varying delay via delta operator approach. Firstly, sufficient conditions which can guarantee thel1-gain finite-time boundedness of the underlying system are given by using the average dwell time approach and constructing an appropriate copositive type Lyapunov-Krasovskii functional in delta domain. Moreover, the obtained conditions can unify some previously suggested relevant results seen in literature of both continuous and discrete systems into the delta operator framework. Then, based on the results obtained, a state feedback controller is designed to ensure that the resulting closed-loop system is finite-time bounded with anl1-gain performance. Finally, a numerical example is presented to demonstrate the effectiveness and feasibility of the proposed method.


2018 ◽  
Vol 2018 ◽  
pp. 1-12 ◽  
Author(s):  
Lihong Yan ◽  
Junmin Li

In this paper, we investigate finite-time synchronization problems of complex dynamical networks with different dimensions of nodes, which contain unknown periodically coupling structures and bounded time-varying delay. Based on finite-time stability theory, the inequality techniques, and the properties of Kronecker production of matrices, some useful finite-time synchronization criteria for complex dynamical network with unknown periodical couplings have been obtained. In addition, with proper adaptive periodical learning law designed, the unknown periodical couplings have been estimated successfully. Finally, some simulation examples are performed to verify the theoretical findings.


2016 ◽  
Vol 2016 ◽  
pp. 1-14 ◽  
Author(s):  
Guoqi Ma ◽  
Linlin Qin ◽  
Xinghua Liu ◽  
Gang Wu

This paper is concerned with the problem of observed-based event-triggered control for switched linear systems with time-varying delay and exogenous disturbance. First by employing a state observer, an observer-based event-triggered controller is designed to guarantee the finite-time boundedness and finite-time stabilization of the resulting dynamic augmented closed-loop system. Then based on the Lyapunov-like function method and the average dwell time technique, some sufficient conditions are given to ensure the finite-time boundedness and finite-time stabilization, respectively. Furthermore, the lower bound of the minimum interevent interval is proved to be positive, which thus excludes the Zeno behavior of sampling. A numerical example is finally exploited to verify the effectiveness and potential of the achieved control scheme.


Sign in / Sign up

Export Citation Format

Share Document