Virtual Adversarial Training-Based Semisupervised Specific Emitter Identification
Deep learning is a new direction of research for specific emitter identification (SEI). Radio frequency (RF) fingerprints of the emitter signal are small and sensitive to noise. It is difficult to assign labels containing category information in noncooperative communication scenarios. This makes network models obtained by conventional supervised learning methods perform unsatisfactorily, leading to poor identification performance. To address this limitation, this paper proposes a semisupervised SEI algorithm based on bispectrum analysis and virtual adversarial training (VAT). Bispectrum analysis is performed on RF signals to enhance individual discriminability. A convolutional neural network (CNN) is used for RF fingerprint extraction. We used a small amount of labelled data to train the CNN in an adversarial manner to improve the antinoise performance of the network in a supervised model. Virtual adversarial samples were calculated for VAT, which made full use of labelled and large unlabelled training data to further improve the generalization capability of the network. Results of numerical experiments on a set of six universal software radio peripheral (USRP; model B210) devices demonstrated the stable and fast convergence performance of the proposed method, which exhibited approximately 90% classification accuracy at 10 dB. Finally, the classification performance of our method was verified using other evaluation metrics including receiver operating characteristic and precision-recall.