The Diagnostic Value of 18F-FDG PET/CT Bone Marrow Uptake Pattern in Detecting Bone Marrow Involvement in Pediatric Neuroblastoma Patients
Objectives. To explore the diagnostic value of 18F-FDG PET/CT bone marrow uptake pattern (BMUP) in detecting bone marrow involvement (BMI) in pediatric neuroblastoma (NB) patients. Methods. Ninety-eight NB patients were enrolled in BMI analysis. Four patterns of bone marrow uptake were categorized based on pretreatment cF-FDG PET/CT images. Some crucial inspection indexes and 18F-FDG PET/CT metabolic parameters were analyzed. The BMUP was divided into BMUP1, BMUP2, BMUP3, and BMUP4. Paired-like homeobox 2b (PHOX2B) of bone marrow and blood, bone marrow biopsy (BMB) result, and 18F-FDG PET/CT were compared to detect BMI. All patients were followed up for at least six months. Results. BMUP had excellent consistency among different physicians. Kappa coefficients of two residents and two attending physicians and between the resident and attending physician, were 0.857, 0.891, and 0.845, respectively. The optimal cut-off value of SUVmax-Bone/Liver was 2.08 to diagnose BMI for BMUP3 patients, and the area under curve (AUC) was 0.873. AUC of PHOX2B of bone marrow (PHOX2B of BM), PHOX2B of blood, BMB, and 18F-FDG PET/CT were 0.916, 0.811, 0.806, and 0.904, respectively. There was no significant difference between PHOX2B of BM and PET/CT. Positive predictive value, negative predictive value, sensitivity, and specificity in diagnosis of BMI were 92.9%, 92.9%, 97.0%, and 83.9% for PET/CT and 96.7%, 80.6%, 89.6%, and 93.5% for PHOX2B of BM, respectively. Conclusions. BMUP of pretreatment 18F-FDG PET/CT is a simple and practical method, which has a relatively high diagnostic efficiency in detecting BMI and might decrease unnecessary invasive inspections in some pediatric NB patients.