Analysis of Brand Visual Design Based on Collaborative Filtering Algorithm
With the continuous development of China’s social economy, the competitiveness of brand market is gradually increasing. In order to improve their own level in brand building, major enterprises gradually explore and study visual communication design. Brand visual design has also received more and more attention. Building a complete and rich visual design system can improve the brand level and attract users to consume. Based on the abovementioned situation, this paper proposes to use collaborative filtering algorithm to analyze and study brand visual design. Firstly, a solution is proposed to solve the problem of low accuracy of general recommendation algorithm in brand goods. Collaborative filtering algorithm is used to analyze the visual communication design process of enterprise brand. Research on personalized image design according to consumers’ trust and recognition of brand design is conducted. In traditional craft brand visual design, we mainly study the impact of image design on consumer behavior. The brand loyalty model is used to predict and analyze the visual design effect. Also, the user’s evaluation coefficient is taken as the expression of brand visual design recognition. Finally, the collaborative filtering algorithm is optimized to improve the consumer similarity based on the original algorithm. The results show that the brand visual design using collaborative filtering algorithm can help enterprises obtain greater benefits in their own brand construction. It provides effective data help in the development of traditional craft brands.