scholarly journals Application of Artificial Intelligence in an Unsupervised Algorithm for Trajectory Segmentation Based on Multiple Motion Features

2022 ◽  
Vol 2022 ◽  
pp. 1-11
Author(s):  
Wenjin Xu ◽  
Shaokang Dong

With the development of the wireless network, location-based services (e.g., the place of interest recommendation) play a crucial role in daily life. However, the data acquired is noisy, massive, it is difficult to mine it by artificial intelligence algorithm. One of the fundamental problems of trajectory knowledge discovery is trajectory segmentation. Reasonable segmentation can reduce computing resources and improvement of storage effectiveness. In this work, we propose an unsupervised algorithm for trajectory segmentation based on multiple motion features (TS-MF). The proposed algorithm consists of two steps: segmentation and mergence. The segmentation part uses the Pearson coefficient to measure the similarity of adjacent trajectory points and extract the segmentation points from a global perspective. The merging part optimizes the minimum description length (MDL) value by merging local sub-trajectories, which can avoid excessive segmentation and improve the accuracy of trajectory segmentation. To demonstrate the effectiveness of the proposed algorithm, experiments are conducted on two real datasets. Evaluations of the algorithm’s performance in comparison with the state-of-the-art indicate the proposed method achieves the highest harmonic average of purity and coverage.

Processes ◽  
2021 ◽  
Vol 9 (7) ◽  
pp. 1128
Author(s):  
Chern-Sheng Lin ◽  
Yu-Ching Pan ◽  
Yu-Xin Kuo ◽  
Ching-Kun Chen ◽  
Chuen-Lin Tien

In this study, the machine vision and artificial intelligence algorithms were used to rapidly check the degree of cooking of foods and avoid the over-cooking of foods. Using a smart induction cooker for heating, the image processing program automatically recognizes the color of the food before and after cooking. The new cooking parameters were used to identify the cooking conditions of the food when it is undercooked, cooked, and overcooked. In the research, the camera was used in combination with the software for development, and the real-time image processing technology was used to obtain the information of the color of the food, and through calculation parameters, the cooking status of the food was monitored. In the second year, using the color space conversion, a novel algorithm, and artificial intelligence, the foreground segmentation was used to separate the vegetables from the background, and the cooking ripeness, cooking unevenness, oil glossiness, and sauce absorption were calculated. The image color difference and the distribution were used to judge the cooking conditions of the food, so that the cooking system can identify whether or not to adopt partial tumbling, or to end a cooking operation. A novel artificial intelligence algorithm is used in the relative field, and the error rate can be reduced to 3%. This work will significantly help researchers working in the advanced cooking devices.


2020 ◽  
pp. 1-11
Author(s):  
Zhang Yingying

Public art communication in colleges and universities needs to be launched with the support of artificial intelligence systems. According to the current situation of public art communication in colleges and universities, this paper builds a smart cloud platform for public art communication in colleges and universities with the support of artificial intelligence algorithms. Moreover, this paper introduces the bandwidth offset coefficient to judge the change of network throughput, introduces the slice download rate difference to first judge the consistency change trend of bandwidth, and then further proposes the calculation method of bandwidth prediction value by situation. In addition, this paper proposes a flexible transmission mechanism based on smart collaborative networks. Through in-depth perception of network status and component behavior, this mechanism implements the selection of the optimal path in the network according to the current network status and user service requirements to complete the transmission of service resources. If the current transmission path fails, the mechanism should ensure the continuity and reliability of the service. The research results show that the system constructed in this paper has good performance and can be applied to practice.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Tiziana Ciano ◽  
Massimiliano Ferrara ◽  
Meisam Babanezhad ◽  
Afrasyab Khan ◽  
Azam Marjani

AbstractThe heat transfer improvements by simultaneous usage of the nanofluids and metallic porous foams are still an attractive research area. The Computational fluid dynamics (CFD) methods are widely used for thermal and hydrodynamic investigations of the nanofluids flow inside the porous media. Almost all studies dedicated to the accurate prediction of the CFD approach. However, there are not sufficient investigations on the CFD approach optimization. The mesh increment in the CFD approach is one of the challenging concepts especially in turbulent flows and complex geometries. This study, for the first time, introduces a type of artificial intelligence algorithm (AIA) as a supplementary tool for helping the CFD. According to the idea of this study, the CFD simulation is done for a case with low mesh density. The artificial intelligence algorithm uses learns the CFD driven data. After the intelligence achievement, the AIA could predict the fluid parameters for the infinite number of nodes or dense mesh without any limitations. So, there is no need to solve the CFD models for further nodes. This study is specifically focused on the genetic algorithm-based fuzzy inference system (GAFIS) to predict the velocity profile of the water-based copper nanofluid turbulent flow in a porous tube. The most intelligent GAFIS could perform the most accurate prediction of the velocity. Hence, the intelligence of GAFIS is tested for different values of cluster influence range (CIR), squash factor(SF), accept ratio (AR) and reject ratio (RR), the population size (PS), and the percentage of crossover (PC). The maximum coefficient of determination (~ 0.97) was related to the PS of 30, the AR of 0.6, the PC of 0.4, CIR of 0.15, the SF 1.15, and the RR of 0.05. The GAFIS prediction of the fluid velocity was in great agreement with the CFD. In the most intelligent condition, the velocity profile predicted by GAFIS was similar to the CFD. The nodes increment from 537 to 7671 was made by the GAFIS. The new predictions of the GAFIS covered all CFD results.


Sensors ◽  
2020 ◽  
Vol 21 (1) ◽  
pp. 14
Author(s):  
Mei Dong ◽  
Hongyu Wu ◽  
Hui Hu ◽  
Rafig Azzam ◽  
Liang Zhang ◽  
...  

With increased urbanization, accidents related to slope instability are frequently encountered in construction sites. The deformation and failure mechanism of a landslide is a complex dynamic process, which seriously threatens people’s lives and property. Currently, prediction and early warning of a landslide can be effectively performed by using Internet of Things (IoT) technology to monitor the landslide deformation in real time and an artificial intelligence algorithm to predict the deformation trend. However, if a slope failure occurs during the construction period, the builders and decision-makers find it challenging to effectively apply IoT technology to monitor the emergency and assist in proposing treatment measures. Moreover, for projects during operation (e.g., a motorway in a mountainous area), no recognized artificial intelligence algorithm exists that can forecast the deformation of steep slopes using the huge data obtained from monitoring devices. In this context, this paper introduces a real-time wireless monitoring system with multiple sensors for retrieving high-frequency overall data that can describe the deformation feature of steep slopes. The system was installed in the Qili connecting line of a motorway in Zhejiang Province, China, to provide a technical support for the design and implementation of safety solutions for the steep slopes. Most of the devices were retained to monitor the slopes even after construction. The machine learning Probabilistic Forecasting with Autoregressive Recurrent Networks (DeepAR) model based on time series and probabilistic forecasting was introduced into the project to predict the slope displacement. The predictive accuracy of the DeepAR model was verified by the mean absolute error, the root mean square error and the goodness of fit. This study demonstrates that the presented monitoring system and the introduced predictive model had good safety control ability during construction and good prediction accuracy during operation. The proposed approach will be helpful to assess the safety of excavated slopes before constructing new infrastructures.


2019 ◽  
Vol 18 (3) ◽  
pp. 89-99
Author(s):  
Vinh Huy Chau ◽  
Anh Thu Vo ◽  
Ba Tuan Le

Abstract As a up and coming sport, powerlifting is gathering more and more attetion. Powerlifters vary in their strength levels and performances at different ages as well as differing in height and weight. Hence the questions arises on how to establish the relationship between age and weight. It is difficult to judge the performance of athletes by artificial expertise, as subjective factors affecting the performance of powerlifters often fail to achieve the desired results. In recent years, artificial intelligence has made groundbreaking strides. Therefore, using artificial intelligence to predict the performance of athletes is among one of many interesting topics in sports competitions. Based on the artificial intelligence algorithm, this research proposes an analysis model of powerlifters’ performance. The results show that the method proposed in this paper can predict the best performance of powerlifters. Coefficient of determination-R2=0.86 and root-mean-square error of prediction-RMSEP=20.98 demonstrate the effectiveness of our method.


Sign in / Sign up

Export Citation Format

Share Document