Simulation of public art communication in colleges based on smart cloud platform and artificial intelligence algorithm

2020 ◽  
pp. 1-11
Author(s):  
Zhang Yingying

Public art communication in colleges and universities needs to be launched with the support of artificial intelligence systems. According to the current situation of public art communication in colleges and universities, this paper builds a smart cloud platform for public art communication in colleges and universities with the support of artificial intelligence algorithms. Moreover, this paper introduces the bandwidth offset coefficient to judge the change of network throughput, introduces the slice download rate difference to first judge the consistency change trend of bandwidth, and then further proposes the calculation method of bandwidth prediction value by situation. In addition, this paper proposes a flexible transmission mechanism based on smart collaborative networks. Through in-depth perception of network status and component behavior, this mechanism implements the selection of the optimal path in the network according to the current network status and user service requirements to complete the transmission of service resources. If the current transmission path fails, the mechanism should ensure the continuity and reliability of the service. The research results show that the system constructed in this paper has good performance and can be applied to practice.

2020 ◽  
Vol 114 (3) ◽  
pp. e537
Author(s):  
Victoria W. Fitz ◽  
Manoj Kumar Kanakasabapathy ◽  
Prudhvi Thirumalaraju ◽  
Leslie B. Ramirez ◽  
Jason E. Swain ◽  
...  

Processes ◽  
2021 ◽  
Vol 9 (7) ◽  
pp. 1128
Author(s):  
Chern-Sheng Lin ◽  
Yu-Ching Pan ◽  
Yu-Xin Kuo ◽  
Ching-Kun Chen ◽  
Chuen-Lin Tien

In this study, the machine vision and artificial intelligence algorithms were used to rapidly check the degree of cooking of foods and avoid the over-cooking of foods. Using a smart induction cooker for heating, the image processing program automatically recognizes the color of the food before and after cooking. The new cooking parameters were used to identify the cooking conditions of the food when it is undercooked, cooked, and overcooked. In the research, the camera was used in combination with the software for development, and the real-time image processing technology was used to obtain the information of the color of the food, and through calculation parameters, the cooking status of the food was monitored. In the second year, using the color space conversion, a novel algorithm, and artificial intelligence, the foreground segmentation was used to separate the vegetables from the background, and the cooking ripeness, cooking unevenness, oil glossiness, and sauce absorption were calculated. The image color difference and the distribution were used to judge the cooking conditions of the food, so that the cooking system can identify whether or not to adopt partial tumbling, or to end a cooking operation. A novel artificial intelligence algorithm is used in the relative field, and the error rate can be reduced to 3%. This work will significantly help researchers working in the advanced cooking devices.


2021 ◽  
pp. 1-10
Author(s):  
Xuying Sun ◽  
Yu Zhang

The importance of the management of ideological and political theory courses in colleges and universities is objective to the importance of ideological and political theory courses. At present, the management of ideological and political theory courses in colleges and universities has big problems in both macro and micro aspects. This paper combines artificial intelligence technology to build an intelligent management system for ideological and political education in colleges and universities based on artificial intelligence, and conducts classroom supervision through intelligent recognition of student status. The KNN outlier detection algorithm based on KD-Tree is proposed to extract the state information of class students. Through data simulation, it can be known that the KD-KNN outlier detection algorithm proposed in this paper significantly improves the efficiency of the algorithm while ensuring the accuracy of the KNN algorithm classification. Through experimental research, it can be seen that the construction of this system not only clarifies the direction of management from a macro perspective, but also reveals specific methods of management from a micro perspective, and to a certain extent effectively solves the problems in the management of ideological and political theory courses in colleges and universities.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Tiziana Ciano ◽  
Massimiliano Ferrara ◽  
Meisam Babanezhad ◽  
Afrasyab Khan ◽  
Azam Marjani

AbstractThe heat transfer improvements by simultaneous usage of the nanofluids and metallic porous foams are still an attractive research area. The Computational fluid dynamics (CFD) methods are widely used for thermal and hydrodynamic investigations of the nanofluids flow inside the porous media. Almost all studies dedicated to the accurate prediction of the CFD approach. However, there are not sufficient investigations on the CFD approach optimization. The mesh increment in the CFD approach is one of the challenging concepts especially in turbulent flows and complex geometries. This study, for the first time, introduces a type of artificial intelligence algorithm (AIA) as a supplementary tool for helping the CFD. According to the idea of this study, the CFD simulation is done for a case with low mesh density. The artificial intelligence algorithm uses learns the CFD driven data. After the intelligence achievement, the AIA could predict the fluid parameters for the infinite number of nodes or dense mesh without any limitations. So, there is no need to solve the CFD models for further nodes. This study is specifically focused on the genetic algorithm-based fuzzy inference system (GAFIS) to predict the velocity profile of the water-based copper nanofluid turbulent flow in a porous tube. The most intelligent GAFIS could perform the most accurate prediction of the velocity. Hence, the intelligence of GAFIS is tested for different values of cluster influence range (CIR), squash factor(SF), accept ratio (AR) and reject ratio (RR), the population size (PS), and the percentage of crossover (PC). The maximum coefficient of determination (~ 0.97) was related to the PS of 30, the AR of 0.6, the PC of 0.4, CIR of 0.15, the SF 1.15, and the RR of 0.05. The GAFIS prediction of the fluid velocity was in great agreement with the CFD. In the most intelligent condition, the velocity profile predicted by GAFIS was similar to the CFD. The nodes increment from 537 to 7671 was made by the GAFIS. The new predictions of the GAFIS covered all CFD results.


Sign in / Sign up

Export Citation Format

Share Document