scholarly journals Explicit forms of Wick tensor powers in general white noise spaces

2002 ◽  
Vol 31 (7) ◽  
pp. 413-420 ◽  
Author(s):  
ZhiyuanHuang Huang ◽  
Xiaoshan Hu ◽  
Xiangjun Wang

This paper is devoted to construction and investigation of explicit forms of Wick tensor powers in general white noise spaces. We give an extension of some objects and structure of Gaussian analysis to the case of more general white noise measures onE*(the dual of a nuclear spaceE), such that the random variable〈ω,ξ〉is infinitely divisible distributed for anyξ∈Eandω∈E*.

Author(s):  
Peter L. Chesson

AbstractRandom transition probability matrices with stationary independent factors define “white noise” environment processes for Markov chains. Two examples are considered in detail. Such environment processes can be used to construct several Markov chains which are dependent, have the same transition probabilities and are jointly a Markov chain. Transition rates for such processes are evaluated. These results have application to the study of animal movements.


2012 ◽  
Vol 44 (3) ◽  
pp. 842-873 ◽  
Author(s):  
Zhiyi Chi

Nonnegative infinitely divisible (i.d.) random variables form an important class of random variables. However, when this type of random variable is specified via Lévy densities that have infinite integrals on (0, ∞), except for some special cases, exact sampling is unknown. We present a method that can sample a rather wide range of such i.d. random variables. A basic result is that, for any nonnegative i.d. random variable X with its Lévy density explicitly specified, if its distribution conditional on X ≤ r can be sampled exactly, where r > 0 is any fixed number, then X can be sampled exactly using rejection sampling, without knowing the explicit expression of the density of X. We show that variations of the result can be used to sample various nonnegative i.d. random variables.


2018 ◽  
Vol 38 (1) ◽  
pp. 77-101
Author(s):  
Palaniappan Vellai Samy ◽  
Aditya Maheshwari

In this paper, we define a fractional negative binomial process FNBP by replacing the Poisson process by a fractional Poisson process FPP in the gamma subordinated form of the negative binomial process. It is shown that the one-dimensional distributions of the FPP and the FNBP are not infinitely divisible. Also, the space fractional Pólya process SFPP is defined by replacing the rate parameter λ by a gamma random variable in the definition of the space fractional Poisson process. The properties of the FNBP and the SFPP and the connections to PDEs governing the density of the FNBP and the SFPP are also investigated.


Author(s):  
Annie Millet ◽  
Svetlana Roudenko ◽  
Kai Yang

Abstract We study the focusing stochastic nonlinear Schrödinger equation in 1D in the $L^2$-critical and supercritical cases with an additive or multiplicative perturbation driven by space-time white noise. Unlike the deterministic case, the Hamiltonian (or energy) is not conserved in the stochastic setting nor is the mass (or the $L^2$-norm) conserved in the additive case. Therefore, we investigate the time evolution of these quantities. After that, we study the influence of noise on the global behaviour of solutions. In particular, we show that the noise may induce blow up, thus ceasing the global existence of the solution, which otherwise would be global in the deterministic setting. Furthermore, we study the effect of the noise on the blow-up dynamics in both multiplicative and additive noise settings and obtain profiles and rates of the blow-up solutions. Our findings conclude that the blow-up parameters (rate and profile) are insensitive to the type or strength of the noise: if blow up happens, it has the same dynamics as in the deterministic setting; however, there is a (random) shift of the blow-up centre, which can be described as a random variable normally distributed.


2016 ◽  
Vol 53 (4) ◽  
pp. 467-511 ◽  
Author(s):  
G. G. Hamedani

We present here characterizations of the most recently introduced continuous univariate distributions based on: (i) a simple relationship between two truncated moments; (ii) truncated moments of certain functions of the 1th order statistic; (iii) truncated moments of certain functions of the nth order statistic; (iv) truncated moment of certain function of the random variable. We like to mention that the characterization (i) which is expressed in terms of the ratio of truncated moments is stable in the sense of weak convergence. We will also point out that some of these distributions are infinitely divisible via Bondesson’s 1979 classifications.


Author(s):  
EUGENE LYTVYNOV

It is well known that between all processes with independent increments, essentially only the Brownian motion and the Poisson process possess the chaotic representation property (CRP). Thus, a natural question appears: What is an appropriate analog of the CRP in the case of a general Lévy process. At least three approaches are possible here. The first one, due to Itô, uses the CRP of the Brownian motion and the Poisson process, as well as the representation of a Lévy process through those processes. The second approach, due to Nualart and Schoutens, consists of representing any square-integrable random variable as a sum of multiple stochastic integrals constructed with respect to a family of orthogonalized centered power jumps processes. The third approach, never applied before to the Lévy processes, uses the idea of orthogonalization of polynomials with respect to a probability measure defined on the dual of a nuclear space. The main aims of this paper are to develop the three approaches in the case of a general (ℝ-valued) Lévy process on a Riemannian manifold and (what is more important) to understand a relationship between these approaches. We apply the obtained results to the gamma, Pascal, and Meixner processes, in which case the analysis related to the orthogonalized polynomials becomes essentially simpler and richer than in the general case.


2005 ◽  
Vol 57 (1-2) ◽  
pp. 129-136
Author(s):  
R.N. Pillai ◽  
Saji Kumar V. R.

It is shown that the waiting time W in a stationary renewal process generated by X has the form W = X+ Y, with Y non­negative independent of X if and only if X is a geometrically infinitely divisible random variable. This is an improvement over Van Harn and Steutel (1995) where the converse is left unproved .


2015 ◽  
Vol 36 ◽  
pp. 1560005 ◽  
Author(s):  
H. P. Suryawan

In this paper we present a realization of Volterra processes within the white noise analysis framework. We show that Donsker's delta functions of Volterra processes are elements from the space of Hida distributions. An explicit expression for the corresponding chaos decomposition in terms of Wick tensor powers of white noise is also given.


Author(s):  
D. N. Shanbhag ◽  
D. Pestana ◽  
M. Sreehari

Goldie (2), Steutel (8, 9), Kelker (4), Keilson and Steutel (3) and several others have studied the mixtures of certain distributions which are infinitely divisible. Recently Shanbhag and Sreehari (7) have proved that if Z is exponential with unit parameter and for 0 < α < 1, if Yx is a positive stable random variable with , t ≥ 0 and independent of Z, then for every 0 < α < 1Using this result, they have obtained several interesting results concerning stable random variables including some extensions of the results of the above authors. More recently, Williams (11) has used the same approach to show that if , where n is a positive integer ≥ 2, then is distributed as the product of n − 1 independent gamma random variables with index parameters α, 2α, …, (n − 1) α. Prior to these investigations, Zolotarev (12) had studied the problems of M-divisibility of stable laws.


2012 ◽  
Vol 44 (03) ◽  
pp. 842-873 ◽  
Author(s):  
Zhiyi Chi

Nonnegative infinitely divisible (i.d.) random variables form an important class of random variables. However, when this type of random variable is specified via Lévy densities that have infinite integrals on (0, ∞), except for some special cases, exact sampling is unknown. We present a method that can sample a rather wide range of such i.d. random variables. A basic result is that, for any nonnegative i.d. random variableXwith its Lévy density explicitly specified, if its distributionconditionalonX≤rcan be sampled exactly, wherer&gt; 0 is any fixed number, thenXcan be sampled exactly using rejection sampling, without knowing the explicit expression of the density ofX. We show that variations of the result can be used to sample various nonnegative i.d. random variables.


Sign in / Sign up

Export Citation Format

Share Document