scholarly journals Characterization of CEBPA Mutations in Acute Myeloid Leukemia: Most Patients with CEBPA Mutations Have Biallelic Mutations and Show a Distinct Immunophenotype of the Leukemic Cells

2005 ◽  
Vol 11 (4) ◽  
pp. 1372-1379 ◽  
Author(s):  
Liang-In Lin ◽  
Chien-Yuan Chen ◽  
Dong-Tsamn Lin ◽  
Woei Tsay ◽  
Jih-Luh Tang ◽  
...  
Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 4321-4321
Author(s):  
Liang In Lin ◽  
Chien Yuan Chen ◽  
Dong Tsamn Lin ◽  
You Chia Yeh ◽  
Hwei Fang Tien

Abstract The transcription factor CCAAT/enhancer binding protein alpha (C/EBPa) encoded by the CEBPA gene, is crucial for the differentiation of immature granulocytes. Diminished or abnormal C/EBPa activity resulting from CEBPA gene mutations is widely known to contribute to the transformation of myeloid progenitors via reduction of their differentiation potential. The CEBPA mutations have been detected in approximately 7% of total acute myeloid leukemia (AML) and in 15% of those with intermediate-risk cytogenetics or those with normal karyotype. However, the age distribution of the patients with the CEBPA mutations and the immunophenotype of their leukemic cells are not known. Sequential studies of the CEBPA gene in AML patients are also limited. In this study, 104 patients with de novo acute myeloid leukemia (AML) were evaluated for the CEBPA mutation by direct sequencing. Excluding the silent mutations, 16 (15%) of the total 104 AML patients, 15 (25%) of the 61 patients with intermediate-risk cytogenetics and 11 (35%) of the 31 patients with normal karyotype showed CEBPA mutations, frequencies higher than those reported in the West. Further cloning and subsequent nucleotide sequence analysis revealed that 14 patients had heterozygous biallelic mutations: 11 had mutations involving both the N-terminal transactivation domain (TAD) and the C-terminal basic leucine zipper domain (bZIP) and three, in either the TAD region or the bZIP region. The remaining two patients had only one allele mutation in the TAD1 region. Most mutations in TAD region were repeat-number changes of simple sequence repeats and those in bZIP region were internal tandem duplications. Sequence analysis revealed that in the region spanning the bZIP mutations, there was hot spot for concensus topoisomerase II sites, which has also been shown in other AML-related mutations FLT3-ITD and MLL duplication. All but one patient with CEBPA mutations had M1 or M2 subtype of AML. The patients with CEBPA mutations had significantly higher incidences of CD7 (73%), CD15 (100%), CD34 (93%) and HLA-DR (93%) expression than others and the majority of them showed a distinct immunophenotype of the leukemic cells: HLA-DR+ CD7+ CD13+ CD14− CD15+ CD33+ CD34+. The incidence of the CEBPA mutation in children with AML was similar to that in adults. The CEBPA mutation was serially analyzed in 27 patients; the mutations disappeared at CR, but reappeared at relapse. No one developed novel mutation during the follow-up period. In conclusion, the CEBPA mutation may play an important role in the development, but not progression, of AML. The patients with the CEBPA mutations showed a distinct immunophenotype of the leukemic cells. Potential topoisomerase II cleavage sites locating in the bZIP region were first reported and we propose that this is relevant to the process of illegitimate recombination generating the internal tandem duplication pattern of bZIP mutations.


Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 363-363
Author(s):  
Andrea Corbacioglu ◽  
Stefan Fröhling ◽  
Corinna Mendla ◽  
Karina Eiwen ◽  
Marianne Habdank ◽  
...  

Abstract Background: Mutations in the myeloid transcription factor CEBPA (CCAAT enhancer binding protein-alpha) have been implicated in 10–15% of cytogenetically normal (CN) acute myeloid leukemia (AML) patients (pts). At the molecular level, two types of heterozygous CEPBA mutations have been identified. First, nonsense mutations affecting the N-terminal region, preventing the expression of the full-length protein, and second, in-frame mutations located in the basic-region-leucine zipper domain, resulting in a decreased CEBPA DNA-binding or dimerization activity. Clinically, CN-AML with mutant CEBPA is associated with a favorable prognosis. Recently, two independent families were reported in whom several family members affected by AML carried heterozygous germline CEBPA mutations. All germline mutations were located in the N-terminus. In addition, somatically acquired C-terminal mutations were detected in one out of three and two out of four family members, respectively. These findings led to the hypothesis that CEBPA germline mutations predispose to AML and that additional somatically acquired mutations may contribute to the development of the disease. Aim: To screen CN-AML pts with somatically acquired CEBPA mutations for germline CEBPA mutations as predisposing events for the development of AML. Methods: Pts were entered in the AML HD98-A or AMLSG 07-04 multicenter treatment trials of the German-Austrian AML Study Group. Buccal mucosa was obtained using commercial FTA filter cards after informed consent; CEBPA mutation screening was performed as recently described. Results: Buccal DNA from 18 pts exhibiting CEBPA mutations in their leukemic cells (biallelic N-terminal and C-terminal, n=12; heterozygous C-terminal, n=5; heterozygous N-terminal, n=1) was available for analysis. In 16 pts, no CEBPA germline mutations could be detected. In one pt, the heterozygous C-terminal in-frame mutation (1609G>A) that was identified in the diagnostic sample was also present in the germline DNA. In a second pt with an N-terminal deletion and a C-terminal insertion mutation in the diagnostic sample, the N-terminal mutation was also identified in the germline material. Interestingly, the daughter of this pt also developed AML at the age of three years, exhibiting the identical N-terminal germline mutation, while the t C-terminal mutation was acquired and different to that of her mother. None of the remaining family members who could be analyzed had CEBPA germline mutations or a history of leukemia. Conclusion: The detection of CEBPA germline mutations in another pedigree with familial AML further sustains the hypothesis that CEBPA germline mutations might be the predisposing event in the development of AML in these families. Since other AML-associated gene mutations are rarely detected in CEBPA mutated cases, somatic mutations in the second allele represent a possible ‘second hit’ in this molecularly defined AML subtype.


Haematologica ◽  
2010 ◽  
Vol 96 (3) ◽  
pp. 384-392 ◽  
Author(s):  
I. H. I. M. Hollink ◽  
M. M. van den Heuvel-Eibrink ◽  
S. T. C. J. M. Arentsen-Peters ◽  
M. Zimmermann ◽  
J. K. Peeters ◽  
...  

2020 ◽  
Vol 23 (2) ◽  
pp. 99-102
Author(s):  
PE Tokgun ◽  
MT Alay ◽  
S Atli Tekin ◽  
N Güler ◽  
O Tokgun ◽  
...  

Abstract Acute myeloid leukemia (AML) was first categorized in 1976 by French, American and British researchers, and divided into eight subgroups (M0 to M7), depending on the cytochemical or histological changes in the leukemic cells. The gene mutations of FLT3-ITD, CEBPA and NPM1 are the most common that cooperate together in the prognosis of AML. The CEBPA gene that is a hematopoietic transcription factor, is located on chromosome 19q13.11, and its prevalence is between 5.0 and 14.0% in AML. The patient was referred to our clinic suffering from menorrhagia, unplanned weight loss in a month and low platelet levels, and was diagnosed with AML on clinical and laboratory examination. Here, we report a patient carrying two novel pathogenic mutations that create a frameshift mutation on the CEBPA gene, c.940_941insCCGTCG TGGAGACGA CGAAGG and c.221_222delAC by Sanger sequencing methodology.


2015 ◽  
Vol 16 (9) ◽  
pp. 3785-3792 ◽  
Author(s):  
Santhi Sarojam ◽  
Sureshkumar Raveendran ◽  
Sangeetha Vijay ◽  
Jayadevan Sreedharan ◽  
Geetha Narayanan ◽  
...  

2021 ◽  
Vol 20 (1) ◽  
pp. 46-53
Author(s):  
E. V. Mikhailova ◽  
S. A. Kashpor ◽  
E. A. Zerkalenkova ◽  
A. A. Semchenkova ◽  
M. E. Dubrovina ◽  
...  

The aim of this study was to describe the immunophenotype of leukemic cells in acute myeloid leukemia (AML) with inv(16) (p13.1q22)/CBFb-MYH11 and t(16;16)(p13.1;q22)/CBFb-MYH11 in children. This study is supported by the Independent Ethics Committee and approved by the Academic Council of the Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology. We investigated bone marrow samples from 36 pediatric patients with initially diagnosed AML with inv(16)(p13.1q22)/t(16;16)(p13.1;q22)/CBFb-MYH11. Immunophenotypic profile of leukemic cells was very heterogeneous: cells expressed antigens of early stages of differentiation (CD34, CD117, CD123) as well as markers of mature monocytes (CD11c, CD14, CD64) and neutrophils (CD65, CD15). Moreover, in 55.6% of cases lymphoid coexpressions were noticed (CD2 – the most frequent one). Furthermore, in 83.3% of cases we detected the separation of leukemic cells population into two parts: more “immature” – myeloblastic, which expressed early markers of differentiation (CD34, CD117), and more “mature” part, expressing monocytic antigens (CD11b, CD14, CD33). There was no clear separation between these parts of population. Despite the immunophenotypic similarity between monocytic part of leukemic population and normal monocytes, in 87.5% of studied cases there were same lymphoid coexpressions on these cells as on leukemic myeloblasts. Moreover, we showed that levels of CBFb-MYH11 expression in leukemic monocytes and myeloblasts were comparable. Presence of these characteristics in monocytes allows to consider them as part of leukemic cells population and take into consideration during the total immunophenotype reporting. 


Open Medicine ◽  
2021 ◽  
Vol 16 (1) ◽  
pp. 387-396
Author(s):  
Sing-Ting Wang ◽  
Chieh-Lung Chen ◽  
Shih-Hsin Liang ◽  
Shih-Peng Yeh ◽  
Wen-Chien Cheng

Abstract Pleural effusions are rarely observed in association with acute myeloid leukemia (AML), and their true incidence remains unknown. Given the low diagnostic yield from cytopathologic analysis of malignant pleural effusions and the fact that patients with leukemia are often thrombocytopenic and unable to tolerate invasive procedures, the incidence of leukemic effusions may be underestimated. Here, we report a rare case of pleural effusion in a patient with newly diagnosed AML. Initial analysis revealed an exudative, lymphocyte-predominant effusion. High levels of adenosine deaminase (ADA) were detected in pleural fluid, consistent with a diagnosis of tuberculosis. However, the analysis of pleural cytology revealed leukemic cells, permitting the diagnosis of leukemic effusion to be made. The patient underwent induction chemotherapy and pleural effusion resolved without recurrence. This case emphasizes the diagnostic dilemma presented by high levels of ADA in a leukemic pleural effusion, as this association has not been previously considered in the literature.


Sign in / Sign up

Export Citation Format

Share Document