Abstract 1346: Discovery of novel MSK1 inhibitors with hybrid virtual screening and structure-based drug design

Author(s):  
Zunnan Huang ◽  
Kangdong Liu ◽  
Ann M. Bode ◽  
Zigang Dong
2018 ◽  
Vol 8 (5) ◽  
pp. 504-509 ◽  
Author(s):  
Surabhi Surabhi ◽  
BK Singh

Discovery and development of a new drug is generally known as a very complex process which takes a lot of time and resources. So now a day’s computer aided drug design approaches are used very widely to increase the efficiency of the drug discovery and development course. Various approaches of CADD are evaluated as promising techniques according to their need, in between all these structure-based drug design and ligand-based drug design approaches are known as very efficient and powerful techniques in drug discovery and development. These both methods can be applied with molecular docking to virtual screening for lead identification and optimization. In the recent times computational tools are widely used in pharmaceutical industries and research areas to improve effectiveness and efficacy of drug discovery and development pipeline. In this article we give an overview of computational approaches, which is inventive process of finding novel leads and aid in the process of drug discovery and development research. Keywords: computer aided drug discovery, structure-based drug design, ligand-based drug design, virtual screening and molecular docking


Author(s):  
Gurusamy Mariappan ◽  
Anju Kumari

Virtual screening plays an important role in the modern drug discovery process. The pharma companies invest huge amounts of money and time in drug discovery and screening. However, at the final stage of clinical trials, several molecules fail, which results in a large financial loss. To overcome this, a virtual screening tool was developed with super predictive power. The virtual screening tool is not only restricted tool small molecules but also to macromolecules such as protein, enzyme, receptors, etc. This gives an insight into structure-based and Ligand-based drug design. VS gives reliable information to direct the process of drug discovery (e.g., when the 3D image of the receptor is known, structure-based drug design is recommended). The pharmacophore-based model is advisable when the information about the receptor or any macromolecule is unknown. In this ADME, parameters such as Log P, bioavailability, and QSAR can be used as filters. This chapter shows both models with various representative examples that facilitate the scientist to use computational screening tools in modern drug discovery processes.


Methods ◽  
2015 ◽  
Vol 71 ◽  
pp. 85-91 ◽  
Author(s):  
Pui Man Hoi ◽  
Shang Li ◽  
Chi Teng Vong ◽  
Hisa Hui Ling Tseng ◽  
Yiu Wa Kwan ◽  
...  

2007 ◽  
Vol 2 (1) ◽  
pp. 37-49 ◽  
Author(s):  
Stefano Moro ◽  
Magdalena Bacilieri ◽  
Francesca Deflorian

2005 ◽  
Vol 16 (1) ◽  
pp. 41-61 ◽  
Author(s):  
Mario Sechi ◽  
Luciano Sannia ◽  
Fabrizio Carta ◽  
Michele Palomba ◽  
Roberto Dallocchio ◽  
...  

HIV-1 integrase (IN) is an attractive and validated target for the development of novel therapeutics against AIDS. Significant efforts have been devoted to the identification of IN inhibitors using various methods. In this context, through virtual screening of the NCI database and structure-based drug design strategies, we identified several pharmacophoric fragments and incorporated them on various aromatic or heteroaromatic rings. In addition, we designed and synthesized a series of 5-aryl(heteroaryl)-isoxazole-3-carboxylic acids as biological isosteric analogues of β-diketo acid containing inhibitors of HIV-1 IN and their derivatives. Further computational docking studies were performed to investigate the mode of interactions of the most active ligands with the IN active site. Results suggested that some of the tested compounds could be considered as lead compounds and suitable for further optimization.


2020 ◽  
Author(s):  
Isabella A. Guedes ◽  
Leon S. C. Costa ◽  
Karina B. dos Santos ◽  
Ana L. M. Karl ◽  
Gregório K. Rocha ◽  
...  

Abstract The COVID-19 caused by the SARS-CoV-2 virus was declared as a pandemic disease in March 2020 by the World Health Organization (WHO). Structure-Based Drug Design strategies based on docking methodologies have been widely used for both new drug development and drug repurposing to find effective treatments against this disease. In this work, we present the developments implemented in the DockThor-VS web server to provide a virtual screening (VS) platform with curated structures of potential therapeutic targets from SARS-CoV-2 incorporating genetic information regarding relevant non-synonymous variations. The web server facilitates repurposing VS experiments providing curated libraries of currently available drugs on the market. Currently, DockThor-VS provides ready-for-docking 3D structures for wild type and selected mutations for Nsp3 (papain-like, PLpro domain), Nsp5 (Mpro, 3CLpro), Nsp12 (RdRp), Nsp15 (NendoU), N protein and Spike. We performed VS experiments of FDA-approved drugs considering the therapeutic targets available at the web server to assess the impact of considering different structures and mutations in the identification of possible new treatments of SARS-CoV-2 infections. The DockThor-VS is freely available at www.dockthor.lncc.br.


Sign in / Sign up

Export Citation Format

Share Document