scholarly journals Human Dental Pulp Stem Cells via the NF-κB Pathway

2015 ◽  
Vol 36 (5) ◽  
pp. 1725-1734 ◽  
Author(s):  
Shensheng Gu ◽  
Shujun Ran ◽  
Feng Qin ◽  
Dong Cao ◽  
Jia Wang ◽  
...  

Background/Aims: Odontogenic differentiation of human dental pulp stem cells (HDPSCs) is regulated by multiple factors and signaling molecules. However, their regulatory mechanisms are not completely understood. In this study, we investigated the role of Zinc finger and BTB domain-containing 20 (ZBTB20) in odontoblastic differentiation of HDPSCs. Methods: HDPSCs were obtained from human third molars and ZBTB20 expression was examined by qRT-PCR and western blot. Their osteo/odontogenic differentiation and the involvement of NF-κB pathway were subsequently investigated. Results: The expression of ZBTB20 is upregulated in a time-dependent manner during odontogenic differentiation of hDPSCs. Inhibition of ZBTB20 reduced osteogenic medium (OM)-induced odontogenic differentiation, reflected in decreased alkaline phosphatase (ALP) activity, mineralized nodule formation and mRNA expression of odonto/osteogenic marker genes. In contrast, overexpression of ZBTB20 enhanced ALP activity, mineralization and the expression of differentiation marker genes. Furthermore, the expression of IκBa was increased by ZBTB20 silencing in HDPSCs, whereas ZBTB20 overexpression decreased IκBa and enhanced nuclear NF-κB p65. Inhibition of the NF-κB pathway significantly suppressed the odontogenic differentiation of HDPSCs induced by ZBTB20. Conclusion: This study shows for the first time that ZBTB20 plays an important role during odontoblastic differentiation of HDPSCs and may have clinical implications for regenerative endodontics.

Materials ◽  
2021 ◽  
Vol 14 (10) ◽  
pp. 2684
Author(s):  
Camila Corral Nunez ◽  
Diego Altamirano Gaete ◽  
Miguel Maureira ◽  
Javier Martin ◽  
Cristian Covarrubias

This study aimed to investigate the cytotoxicity and bioactivity of a novel nanocomposite containing nanoparticles of bioactive glass (nBGs) on human dental pulp stem cells (hDPSCs). nBGs were synthesized by the sol–gel method. Biodentine (BD) nanocomposites (nBG/BD) were prepared with 2 and 5% wt of nBG content; unmodified BD and glass ionomer cement were used as references. Cell viability and attachment were evaluated after 3, 7 and 14 days. Odontogenic differentiation was assessed with alkaline phosphatase (ALP) activity after 7 and 14 days of exposure. Cells successfully adhered and proliferated on nBG/BD nanocomposites, cell viability of nanocomposites was comparable with unmodified BD and higher than GIC. nBG/BD nanocomposites were, particularly, more active to promote odontogenic differentiation, expressed as higher ALP activity of hDPSCs after 7 days of exposure, than neat BD or GIC. This novel nanocomposite biomaterial, nBG/BD, allowed hDPSC attachment and proliferation and increased the expression of ALP, upregulated in mineral-producing cells. These findings open opportunities to use nBG/BD in vital pulp therapies.


Materials ◽  
2020 ◽  
Vol 13 (18) ◽  
pp. 3925
Author(s):  
Yemi Kim ◽  
Donghee Lee ◽  
Dani Song ◽  
Hye-Min Kim ◽  
Sin-Young Kim

In this study, we assessed the biocompatibility and bioactivity of various pulp capping materials—ProRoot MTA (Dentsply Tulsa Dental Specialties), Biodentine (Septodont), TheraCal LC (Bisco), and Dycal (Dentsply Caulk)—on human dental pulp stem cells (hDPSCs). Experimental disks (diameter, 7 mm; height, 4 mm) were stored in a humified incubator at 37 °C for 48 h. Then, the pulp capping materials were tested for cytotoxic effects by methyl-thiazoldiphenyl-tetrazolium and scratch wound healing assays, and for mineralization potential by Alizarin red S (ARS) staining assay and alkaline phosphatase enzyme (ALP) activity. Cell viability and cell migration did not significantly differ between ProRoot MTA, Biodentine, and control (p > 0.05). TheraCal LC exhibited slower cell migration on days 2–4 compared to control (p < 0.05), and Dycal showed no cell migration. ALP activity was highest with Biodentine on days 10 and 14, and was lowered with TheraCal LC and Dycal (p < 0.05). In the ARS assay, hDPSCs grown in ProRoot MTA and TheraCal LC eluates showed significantly increased mineralized nodule formation on day 21 compared to Biodentine, Dycal, and control (p < 0.05). These findings indicate that ProRoot MTA, Biodentine, and TheraCal LC exhibit better biocompatibility and bioactivity than Dycal.


2021 ◽  
Author(s):  
min xiao ◽  
Bo Yao ◽  
Xiaohan Mei ◽  
yu bai ◽  
Jueyu Wang ◽  
...  

Abstract Background SDF-1α cotreatment was shown to have synergistic effects on BMP-2-induced odontogenic differentiation of human apical dental papillary stem cells (SCAP) both in vitro and in vivo. Long noncoding RNAs (lncRNAs) have an important role in the odontogenic differentiation of dental pulp stem cells (DPSCs). Methods We examined the altered expression of lncRNAs in SDF-1α-induced odontogenic differentiation of DPSCs by lncRNA microarray and quantitative reverse transcription polymerase chain reaction (qRT-PCR) analyses. Alterations in lncRNA expression during odontogenic differentiation of DPSCs were identified. Moreover, bioinformatic analysis [Gene Ontology (GO) analysis and coding-noncoding gene coexpression (CNC) analysis] was conducted to predict the interactions of lncRNAs and identify core regulatory factors in SDF-1α-induced odontogenic differentiation of DPSCs. Results The microarray analysis identified 206 differentially expressed lncRNAs (134 lncRNAs with upregulated expression and 72 with downregulated expression) at 7 days post‑treatment. The data demonstrated that one lncRNA, AC080037.1, regulates SDF-1α-induced odontogenic differentiation of DPSCs. Our data showed that lncRNA AC080037.1 siRNA suppresses DPSCs migration and the expression of Rho GTPase induced by SDF-1α. Moreover, AC080037.1 knockdown significantly affected SDF-1α- and BMP-2-induced mineralized nodule formation and strongly suppressed Runt-related factor-2 (RUNX-2), DMP-1 and DSPP expression in DPSCs. Conclusions Our


Biomolecules ◽  
2020 ◽  
Vol 10 (7) ◽  
pp. 972
Author(s):  
Roberta Souza D’Almeida Couto ◽  
Maria Fernanda Setubal Destro Rodrigues ◽  
Leila Soares Ferreira ◽  
Ivana Márcia Alves Diniz ◽  
Fernando de Sá Silva ◽  
...  

The purpose of this study was to analyze in vitro the biological effects on human dental pulp stem cells triggered in response to substances leached or dissolved from two experimental cements for dental pulp capping. The experimental materials, based on extracts from Copaifera reticulata Ducke (COP), were compared to calcium hydroxide [Ca(OH)2] and mineral trioxide aggregate (MTA), materials commonly used for direct dental pulp capping in restorative dentistry. For this, human dental pulp stem cells were exposed to COP associated or not with Ca(OH)2 or MTA. Cell cytocompatibility, migration, and differentiation (mineralized nodule formation (Alizarin red assay) and gene expression (RT-qPCR) of OCN, DSPP, and HSP-27 (genes regulated in biomineralization events)) were evaluated. The results showed that the association of COP reduced the cytotoxicity of Ca(OH)2. Upregulations of the OCN, DSPP, and HSP-27 genes were observed in response to the association of COP to MTA, and the DSPP and HSP-27 genes were upregulated in the Ca(OH)2 + COP group. In up to 24 h, cell migration was significantly enhanced in the MTA + COP and Ca(OH)2 + COP groups. In conclusion, the combination of COP with the currently used materials for dental pulp capping [Ca(OH)2 and MTA] improved the cell activities related to pulp repair (i.e., cytocompatibility, differentiation, mineralization, and migration) including a protective effect against the cytotoxicity of Ca(OH)2.


2019 ◽  
Vol 19 (1) ◽  
Author(s):  
Wenzhen Lin ◽  
Li Gao ◽  
Wenxin Jiang ◽  
Chenguang Niu ◽  
Keyong Yuan ◽  
...  

2019 ◽  
Vol 20 (22) ◽  
pp. 5778
Author(s):  
Yeon Kim ◽  
Joo-Yeon Park ◽  
Hyun-Joo Park ◽  
Mi-Kyoung Kim ◽  
Yong-Il Kim ◽  
...  

Pentraxin-3 (PTX3) is recognized as a modulator of inflammation and a mediator of tissue repair. In this study, we characterized the role of PTX3 on some biological functions of human dental pulp stem cells (HDPSCs). The expression level of PTX3 significantly increased during osteogenic/odontogenic differentiation of HDPSCs, whereas the knockdown of PTX3 decreased this differentiation. Silencing of PTX3 in HDPSCs inhibited their migration and C-X-C chemokine receptor type 4 (CXCR4) expression. Our present study indicates that PTX3 is involved in osteogenic/odontogenic differentiation and migration of HDPSCs, and may contribute to the therapeutic potential of HDPSCs for regeneration and repair.


2019 ◽  
Vol 13 (1) ◽  
pp. 3-10 ◽  
Author(s):  
Saeed Rahimi ◽  
Sadegh Salarinasab ◽  
Negin Ghasemi ◽  
Reza Rahbarghazi ◽  
Shahriar Shahi ◽  
...  

Background. The aim of this in vitro study was to investigate the effect of zinc oxide (ZnO) and zirconium oxide (ZrO2) microparticles (MPs) and nanoparticles (NPs) in combination with white Portland cement (WPC) on odontogenic capacity of human dental pulp stem cells over a period of 21 days. Methods. Synthesized ZnO and ZrO2 particles were characterized using scanning electron microscopy and transmission electron microscopy. The viability of human dental pulp stem cells was measured by a 3-(4,5-dimethylthiazolyl-2-yl)-2,5- diphenyltetrazolium bromide assay at 7-, 14- and 21-day intervals after seeding on WPC disks enriched with ZnO and ZrO2 MPs and NPs. Odontogenic potential of ZnO and ZrO2 particles in combination with WPC was investigated by alkaline phosphatase (ALP) activity and ionized calcium level of supernatant culture media at different time intervals. Data were analyzed using one-way ANOVA and post hoc Tukey tests. Results. All the materials exhibited cell viability over a 21-day period, except for WPC with ZnO NPs on day 7, although it was not statistically significant (P>0.05). The ALP activity and ionized calcium level increased in all the groups compared to the control group (P<0.05). ZnO NPs had superior effect on odontogenic activity and calcium ion release compared to ZnO MPs (P=0.046). There was no significant difference between ZrO2 MPs and NPs in odontogenic activity (P>0.05). Conclusion. WPC enriched with ZnO and ZrO2 increased ALP activity and calcium ion release of human dental pulp stem cells over a period of 21 days in vitro.


Sign in / Sign up

Export Citation Format

Share Document