scholarly journals Evaluation of Resin-Based Material Containing Copaiba Oleoresin (Copaifera Reticulata Ducke): Biological Effects on the Human Dental Pulp Stem Cells

Biomolecules ◽  
2020 ◽  
Vol 10 (7) ◽  
pp. 972
Author(s):  
Roberta Souza D’Almeida Couto ◽  
Maria Fernanda Setubal Destro Rodrigues ◽  
Leila Soares Ferreira ◽  
Ivana Márcia Alves Diniz ◽  
Fernando de Sá Silva ◽  
...  

The purpose of this study was to analyze in vitro the biological effects on human dental pulp stem cells triggered in response to substances leached or dissolved from two experimental cements for dental pulp capping. The experimental materials, based on extracts from Copaifera reticulata Ducke (COP), were compared to calcium hydroxide [Ca(OH)2] and mineral trioxide aggregate (MTA), materials commonly used for direct dental pulp capping in restorative dentistry. For this, human dental pulp stem cells were exposed to COP associated or not with Ca(OH)2 or MTA. Cell cytocompatibility, migration, and differentiation (mineralized nodule formation (Alizarin red assay) and gene expression (RT-qPCR) of OCN, DSPP, and HSP-27 (genes regulated in biomineralization events)) were evaluated. The results showed that the association of COP reduced the cytotoxicity of Ca(OH)2. Upregulations of the OCN, DSPP, and HSP-27 genes were observed in response to the association of COP to MTA, and the DSPP and HSP-27 genes were upregulated in the Ca(OH)2 + COP group. In up to 24 h, cell migration was significantly enhanced in the MTA + COP and Ca(OH)2 + COP groups. In conclusion, the combination of COP with the currently used materials for dental pulp capping [Ca(OH)2 and MTA] improved the cell activities related to pulp repair (i.e., cytocompatibility, differentiation, mineralization, and migration) including a protective effect against the cytotoxicity of Ca(OH)2.

Materials ◽  
2020 ◽  
Vol 13 (18) ◽  
pp. 3925
Author(s):  
Yemi Kim ◽  
Donghee Lee ◽  
Dani Song ◽  
Hye-Min Kim ◽  
Sin-Young Kim

In this study, we assessed the biocompatibility and bioactivity of various pulp capping materials—ProRoot MTA (Dentsply Tulsa Dental Specialties), Biodentine (Septodont), TheraCal LC (Bisco), and Dycal (Dentsply Caulk)—on human dental pulp stem cells (hDPSCs). Experimental disks (diameter, 7 mm; height, 4 mm) were stored in a humified incubator at 37 °C for 48 h. Then, the pulp capping materials were tested for cytotoxic effects by methyl-thiazoldiphenyl-tetrazolium and scratch wound healing assays, and for mineralization potential by Alizarin red S (ARS) staining assay and alkaline phosphatase enzyme (ALP) activity. Cell viability and cell migration did not significantly differ between ProRoot MTA, Biodentine, and control (p > 0.05). TheraCal LC exhibited slower cell migration on days 2–4 compared to control (p < 0.05), and Dycal showed no cell migration. ALP activity was highest with Biodentine on days 10 and 14, and was lowered with TheraCal LC and Dycal (p < 0.05). In the ARS assay, hDPSCs grown in ProRoot MTA and TheraCal LC eluates showed significantly increased mineralized nodule formation on day 21 compared to Biodentine, Dycal, and control (p < 0.05). These findings indicate that ProRoot MTA, Biodentine, and TheraCal LC exhibit better biocompatibility and bioactivity than Dycal.


2017 ◽  
Vol 2017 ◽  
pp. 1-9 ◽  
Author(s):  
Soo-Kyung Jun ◽  
Jung-Hwan Lee ◽  
Hae-Hyoung Lee

The aim of this study was to investigate the biomineralization of a newly introduced bioactive glass-incorporated light-curable pulp capping material using human dental pulp stem cells (hDPSCs). The product (Bioactive® [BA]) was compared with a conventional calcium hydroxide-incorporated (Dycal [DC]) and a light-curable (Theracal® [TC]) counterpart. Eluates from set specimens were used for investigating the cytotoxicity and biomineralization ability, determined by alkaline phosphatase (ALP) activity and alizarin red staining (ARS). Cations and hydroxide ions in the extracts were measured. An hDPSC viability of less than 70% was observed with 50% diluted extract in all groups and with 25% diluted extract in the DC. Culturing with 12.5% diluted BA extract statistically lowered ALP activity and biomineralization compared to DC (p<0.05), but TC did not (p>0.05). Ca (~110 ppm) and hydroxide ions (pH 11) were only detected in DC and TC. Ionic supplement-added BA, which contained similar ion concentrations as TC, showed similar ARS mineralization compared to TC. In conclusion, the BA was similar to, yet more cytotoxic to hDPSCs than, its DC and TC. The BA was considered to stimulate biomineralization similar to DC and TC only when it released a similar amount of Ca and hydroxide ions.


2021 ◽  
Author(s):  
Marcella La Noce ◽  
Antonietta Stellavato ◽  
Valentina Vassallo ◽  
Marcella Cammarota ◽  
Luigi Laino ◽  
...  

Abstract Background. Hyaluronic acid (HA) is the major component of the extracellular matrix of human tissue, where it regulates processes such as osmotic pressure, water retention, cell migration, and differentiation. For these reasons, hyaluronans are currently used in regenerative medicine in different areas. Nevertheless, hyaluronans exist in different forms accordingly with molecular weight and degree of crosslinking, which can have a different and context-depended effects on cellular processes. Thus, picking the most appropriate form of hyaluronan turn out to be fundamental as it can make a huge difference in tissue regeneration. MSCs have attracted attention in tissue regeneration for their proliferation potential and ability to differentiate in several cytotypes. Among MSCs, human Dental Pulp Stem Cells (hDPSCs) were shown to be remarkably suitable for bone differentiation.In this study, we tested the capability to induce osteogenic differentiation in hDPSCs of three hyaluronans forms: linear pharmaceutical-grade hyaluronans at high (HHA), low molecular weight (LHA), and the recently stabilized hybrid cooperative complexes (HCC), containing both sizes.Methods. hDPSCs were treated with HHA, LHA, HCC for 7, 14 and 21 days. The effects of hyaluronans on osteogenic differentiation were evaluated by qRT-PCR and WB of osteogenic markers and by Alizarin Red S staining. CD44, the main receptor of the HA on cell surface and an upstream regulator of YAP/TAZ signaling, was analyzed by immunofluorescence. YAP/TAZ expression was measured by qRT-PCR. To confirm the involvement of YAP/TAZ pathway, YAP/TAZ inhibitor-1 was used and the loss of function of YAP/TAZ was evaluated by qRT-PCR, WB and immunofluorescence.Results. HCC was found to be the most impacting in inducing osteogenesis, with significant effects already at 7-14 days of treatment. HCC induced strong overexpression of osteocalcin, osteopontin, and bone sialoprotein, calcification nodule formation, and CD44 up-regulation.In addition, we showed that this biological process is associated to the activation of YAP/TAZ pathway and its target genes CTGF, ANKDR-1, RUNX-1, and RUNX-2.Conclusions. In conclusion, in this study we show that HA’s molecular weight can have a tremendous impact on HA performance for bone regeneration, and we unveil a new molecular mechanism by which HA acts on stem cells.


Author(s):  
Ning Wang ◽  
Xiao Han ◽  
Haoqing Yang ◽  
Dengsheng Xia ◽  
Zhipeng Fan

Background: Tooth tissue regeneration mediated by mesenchymal stem cells (MSCs) has become the most ideal treatment. Although the known regulatory mechanism and some achievements have been discovered, directional differentiation cannot effectively induce regeneration of tooth tissue. In this study, we intended to explore the function and mechanism of miR-6807-5p and its target gene METTL7A in odontogenic differentiation.Methods: In this study, human dental pulp stem cells (DPSCs) were used. Alkaline phosphatase (ALP), Alizarin red staining (ARS), and calcium ion quantification were used to detect the odontogenic differentiation of miR-6807-5p and METTL7A. Real-time RT-PCR, western blot, dual-luciferase reporter assay, and pull-down assay with biotinylated miRNA were used to confirm that METTL7A was the downstream gene of miR-6807-5p. Protein mass spectrometry and co-immunoprecipitation (Co-IP) were used to detect that SNRNP200 was the co-binding protein of METTL7A.Results: After mineralized induction, the odontogenic differentiation was enhanced in the miR-6807-5p-knockdown group and weakened in the miR-6807-5p-overexpressed group compared with the control group. METTL7A was the downstream target of miR-6807-5p. After mineralized induction, the odontogenic differentiation was weakened in the METTL7A-knockdown group and enhanced in the METTL7A-overexpressed group compared with the control group. SNRNP200 was the co-binding protein of METTL7A. The knockdown of SNRNP200 inhibited the odontogenic differentiation of DPSCs.Conclusion: This study verified that miR-6807-5p inhibited the odontogenic differentiation of DPSCs. The binding site of miR-6807-5p was the 3′UTR region of METTL7A, which was silenced by miR-6807-5p. METTL7A promoted the odontogenic differentiation of DPSCs. SNRNP200, a co-binding protein of METTL7A, promoted the odontogenic differentiation of DPSCs.


2020 ◽  
Vol 2020 ◽  
pp. 1-10
Author(s):  
Lina M. Escobar ◽  
Zita Bendahan ◽  
Andrea Bayona ◽  
Jaime E. Castellanos ◽  
María-Clara González

Introduction. The aim of the present study was to determine the effects of vitamins D and E on the proliferation, morphology, and differentiation of human dental pulp stem cells (hDPSCs). Methods. In this in vitro experimental study, hDPSCs were isolated, characterized, and treated with vitamins D and E, individually and in combination, utilizing different doses and treatment periods. Changes in morphology and cell proliferation were evaluated using light microscopy and the resazurin assay, respectively. Osteoblast differentiation was evaluated with alizarin red S staining and expression of RUNX2, Osterix, and Osteocalcin genes using real-time RT-PCR. Results. Compared with untreated cells, the number of cells significantly reduced following treatment with vitamin D (49%), vitamin E (35%), and vitamins D + E (61%) after 144 h. Compared with cell cultures treated with individual vitamins, cells treated with vitamins D + E demonstrated decreased cell confluence, with more extensive and flatter cytoplasm that initiated the formation of a significantly large number of calcified nodules after 7 days of treatment. After 14 days, treatment with vitamins D, E, and D + E increased the transcription of RUNX2, Osterix, and Osteocalcin genes. Conclusions. Vitamins D and E induced osteoblastic differentiation of hDPSCs, as evidenced by the decrease in cell proliferation, morphological changes, and the formation of calcified nodules, increasing the expression of differentiation genes. Concurrent treatment with vitamins D + E induces a synergistic effect in differentiation toward an osteoblastic lineage.


Nanomaterials ◽  
2020 ◽  
Vol 10 (4) ◽  
pp. 620 ◽  
Author(s):  
Jae Hwa Ahn ◽  
In-Ryoung Kim ◽  
Yeon Kim ◽  
Dong-Hyun Kim ◽  
Soo-Byung Park ◽  
...  

The purpose of this study was to investigate the effects of mesoporous bioactive glass nanoparticle (MBN)/graphene oxide (GO) composites on the mineralization ability and differentiation potential of human dental pulp stem cells (hDPSCs). MBN/GO composites were synthesized using the sol-gel method and colloidal processing to enhance the bioactivity and mechanical properties of MBN. Characterization using FESEM, XRD, FTIR, and Raman spectrometry showed that the composites were successfully synthesized. hDPSCs were then cultured directly on the MBN/GO (40:1 and 20:1) composites in vitro. MBN/GO promoted the proliferation and alkaline phosphatase (ALP) activity of hDPSCs. In addition, qRT-PCR showed that MBN/GO regulated the mRNA levels of odontogenic markers (dentin sialophosphoprotein (DSPP), dentine matrix protein 1 (DMP-1), ALP, matrix extracellular phosphoglycoprotein (MEPE), bone morphogenetic protein 2 (BMP-2), and runt-related transcription factor 2 (RUNX-2)). The mRNA levels of DSPP and DMP-1, two odontogenesis-specific markers, were considerably upregulated in hDPSCs in response to growth on the MBN/GO composites. Western blot analysis revealed similar results. Alizarin red S staining was subsequently performed to further investigate MBN/GO-induced mineralization of hDPSCs. It was revealed that MBN/GO composites promote odontogenic differentiation via the Wnt/β-catenin signaling pathway. Collectively, the results of the present study suggest that MBN/GO composites may promote the differentiation of hDPSCs into odontoblast-like cells, and potentially induce dentin formation.


2020 ◽  
Vol 10 (7) ◽  
pp. 978-986
Author(s):  
Haiquan Yue ◽  
Yidan Guo ◽  
Juan Song ◽  
Ruimin Liu

The paper is committed to uncovering the effect of miR-217 on osteogenic differentiation of human dental pulp stem cells (hDPSCs) and its mechanism. hDPSCs were separated from human dental pulp tissues for measurement of stemness. The osteogenic differentiation of hDPSCs was induced in an osteogenic induction medium. The hDPSCs were transfected with miR-217 mimic, miR-217 inhibitor and/or sh-SIRT1 accordingly. The expressions of miR-217 and SIRT1 were detected in hDPSCs after cell transfection and osteogenic differentiation. Calcium nodules were showed by alizarin red staining. Moreover, the expressions of osteogenic differentiation-related genes were also assessed. The binding of miR-217 to SIRT1 was predicted on starBase and further determined by dual-luciferase reporter assay. Down-regulated miR-217 and up-regulated SIRT1 were found during osteogenic differentiation of hDPSCs. The osteogenic differentiation of hDPSCs was suppressed after transfection of miR-217 mimic or sh-SIRT1 while promoted by miR-217 inhibition. Taken together, miR-217 can suppress osteogenic differentiation of hDPSCs by negatively regulating SIRT1.


Sign in / Sign up

Export Citation Format

Share Document