Cerebrospinal Fluid BACE1 Activity and sAβPPβ as Biomarker Candidates of Alzheimer’s Disease

2018 ◽  
Vol 45 (3-4) ◽  
pp. 152-161 ◽  
Author(s):  
Panagiotis Alexopoulos ◽  
Nathalie Thierjung ◽  
Timo Grimmer ◽  
Marion Ortner ◽  
Polychronis Economou ◽  
...  

Background/Aims: The utility of β-site amyloid-β precursor protein (AβPP) cleaving enzyme 1 (BACE1) activity and soluble AβPP β (sAβPPβ) levels in cerebrospinal fluid (CSF) in detecting Alzheimer’s disease (AD) is still elusive. Methods: BACE1 activity and sAβPPβ concentration were measured in patients with AD dementia (n = 56) and mild cognitive impairment (MCI) due to AD (n = 76) with abnormal routine AD CSF markers, in patients with MCI with normal CSF markers (n = 39), and in controls without preclinical AD (n = 48). In a subsample with available 18F-fluorodeoxyglucose positron emission tomography (FDG PET) data, ordinal regression models were employed to compare the contribution of BACE1 and sAβPPβ to correct diagnostic classification to that of FDG PET. Results: BACE1 activity was significantly higher in patients with MCI due to AD compared to both controls and patients with MCI with normal CSF markers. sAβPPβ did not differ between any of the studied groups. Interestingly, BACE1 activity was not found to be inferior to FDG PET as predictive covariate in differentiating between the diagnostic groups. Conclusions: Further studies using biomarker-underpinned diagnoses are warranted to shed more light on the potential diagnostic utility of BACE1 activity as AD biomarker candidate in MCI.

2021 ◽  
pp. 1-12
Author(s):  
Heng Zhang ◽  
Diyang Lyu ◽  
Jianping Jia ◽  

Background: Synaptic degeneration has been suggested as an early pathological event that strongly correlates with severity of dementia in Alzheimer’s disease (AD). However, changes in longitudinal cerebrospinal fluid (CSF) growth-associated protein 43 (GAP-43) as a synaptic biomarker in the AD continuum remain unclear. Objective: To assess the trajectory of CSF GAP-43 with AD progression and its association with other AD hallmarks. Methods: CSF GAP-43 was analyzed in 788 participants from the Alzheimer’s Disease Neuroimaging Initiative (ADNI), including 246 cognitively normal (CN) individuals, 415 individuals with mild cognitive impairment (MCI), and 127 with AD dementia based on cognitive assessments. The associations between a multimodal classification scheme with amyloid-β (Aβ), tau, and neurodegeneration, and changes in CSF GAP-43 over time were also analyzed. Results: CSF GAP-43 levels were increased at baseline in MCI and dementia patients, and increased significantly over time in the preclinical (Aβ-positive CN), prodromal (Aβ-positive MCI), and dementia (Aβ-positive dementia) stages of AD. Higher levels of CSF GAP-43 were also associated with higher CSF phosphorylated tau (p-tau) and total tau (t-tau), cerebral amyloid deposition and hypometabolism on positron emission tomography, the hippocampus and middle temporal atrophy, and cognitive performance deterioration at baseline and follow-up. Furthermore, CSF GAP-43 may assist in effectively predicting the probability of dementia onset at 2- or 4-year follow-up. Conclusion: CSF GAP-43 can be used as a potential biomarker associated with synaptic degeneration in subjects with AD; it may also be useful for tracking the disease progression and for monitoring the effects of clinical trials.


2019 ◽  
Vol 19 (1) ◽  
pp. 43-50 ◽  
Author(s):  
Timo Grimmer ◽  
Oliver Goldhardt ◽  
Igor Yakushev ◽  
Marion Ortner ◽  
Christian Sorg ◽  
...  

Background: Neprilysin (NEP) cleaves amyloid-β 1–42 (Aβ42) in the brain. Hence, we aimed to elucidate the effect of NEP on Aβ42 in cerebrospinal fluid (CSF) and on in vivo brain amyloid load using amyloid positron emission tomography (PET) with [11C]PiB (Pittsburgh compound B). In addition, associations with the biomarkers for neuronal injury, CSF-tau and FDG-PET, were investigated. Methods: Associations were calculated using global and voxel-based (SPM8) linear regression analyses in the same cohort of 23 highly characterized Alzheimer’s disease patients. Results: CSF-NEP was significantly inversely associated with CSF-Aβ42 and positively with the extent of neuronal injury as measured by CSF-tau and FDG-PET. Conclusions: Our results on CSF-NEP are compatible with the assumption that local degradation, amongst other mechanisms of amyloid clearance, plays a role in the development of Alzheimer’s pathology. In addition, CSF-NEP is associated with the extent and the rate of neurodegeneration.


2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Shorena Janelidze ◽  
Erik Stomrud ◽  
Ruben Smith ◽  
Sebastian Palmqvist ◽  
Niklas Mattsson ◽  
...  

AbstractCerebrospinal fluid (CSF) p-tau181 (tau phosphorylated at threonine 181) is an established biomarker of Alzheimer’s disease (AD), reflecting abnormal tau metabolism in the brain. Here we investigate the performance of CSF p-tau217 as a biomarker of AD in comparison to p-tau181. In the Swedish BioFINDER cohort (n = 194), p-tau217 shows stronger correlations with the tau positron emission tomography (PET) tracer [18F]flortaucipir, and more accurately identifies individuals with abnormally increased [18F]flortaucipir retention. Furthermore, longitudinal increases in p-tau217 are higher compared to p-tau181 and better correlate with [18F]flortaucipir uptake. P-tau217 correlates better than p-tau181 with CSF and PET measures of neocortical amyloid-β burden and more accurately distinguishes AD dementia from non-AD neurodegenerative disorders. Higher correlations between p-tau217 and [18F]flortaucipir are corroborated in an independent EXPEDITION3 trial cohort (n = 32). The main results are validated using a different p-tau217 immunoassay. These findings suggest that p-tau217 might be more useful than p-tau181 in the diagnostic work up of AD.


2021 ◽  
pp. 1-10
Author(s):  
Ya-Hui Ma ◽  
Ya-Yu Wang ◽  
Lan Tan ◽  
Wei Xu ◽  
Xue-Ning Shen ◽  
...  

Background: Although social networks are deemed as moderators of incident Alzheimer’s disease (AD), few data are available on the mechanism relevant to AD pathology. Objective: We aimed to investigate whether social networks affect metabolism of cerebrospinal fluid (CSF) AD biomarkers during early stage and identify modification effects of genetic factor and subjective cognitive decline (SCD). Methods: We studied participants from the Chinese Alzheimer’s disease Biomarker and Lifestyle (CABLE) database who received cognition assessments and CSF amyloid-β (Aβ 1–42 and Aβ 1–40) and tau proteins (total-tau [T-tau] and phosphorylated-tau [P-tau]) measurements. The social networks were measured using self-reported questionnaires about social ties. Linear regression models were used. Results: Data were analyzed from 886 cognitively intact individuals aged 61.91 years (SD = 10.51), including 295 preclinical AD participants and 591 healthy controls. Social networks were mostly associated with CSF indicators of AD multi-pathologies (low P-tau/Aβ 1–42 and T-tau/Aβ 1–42 and high Aβ 1–42/Aβ 1–40). Significant differences of genetic and cognitive status were observed for CSF indicators, in which associations of social network scores with CSF P-tau and indicators of multi-pathologies appeared stronger in APOE 4 carriers (versus non-carriers) and participants with SCD (versus controls), respectively. Alternatively, more pronounced associations for CSF T-tau (β= –0.005, p <  0.001), Aβ 1–42/Aβ 1–40 (β= 0.481, p = 0.001), and T-tau/Aβ 1–42 (β= –0.047, p <  0.001) were noted in preclinical AD stage than controls. Conclusion: These findings consolidated strong links between social networks and AD risks. Social networks as a modifiable lifestyle probably affected metabolisms of multiple AD pathologies, especially among at-risk populations.


2021 ◽  
pp. 1-8
Author(s):  
Akinori Futamura ◽  
Sotaro Hieda ◽  
Yukiko Mori ◽  
Kensaku Kasuga ◽  
Azusa Sugimoto ◽  
...  

Background: Toxic amyloid-β protein (Aβ) conformers play an important role in the progression of Alzheimer’s disease (AD). The ratio of toxic conformer to total Aβ42 in cerebrospinal fluid (CSF) was significantly high in AD and mild cognitive impairment (MCI) due to AD using an enzyme-linked immunosorbent assay kit with a 24B3 antibody. Objective: We compared the toxic Aβ42, conformer at different stages of AD to identify its contribution to AD pathogenesis. Methods: We compared 5 patients with preclinical AD, 11 patients with MCI due to AD, 21 patients with AD, and 5 healthy controls to measure CSF levels of total Aβ42, total tau, tau phosphorylated at threonine 181 (p-tau), and toxic Aβ conformers. All were classified using the Clinical Dementia Rating. Cognitive function was assessed using the Japanese version of the Mini-Mental State Examination (MMSE-J). Results: Toxic Aβ conformer level was insignificant between groups, but its ratio to Aβ42 was significantly higher in AD than in preclinical AD (p <  0.05). Toxic Aβ42 conformer correlated positively with p-tau (r = 0.67, p <  0.01) and p-tau correlated negatively with MMSE-J (r = –0.38, p <  0.05). Conclusion: Toxic Aβ conformer triggers tau accumulation leading to neuronal impairment in AD pathogenesis.


2012 ◽  
Vol 2012 ◽  
pp. 1-6 ◽  
Author(s):  
Timo Grimmer ◽  
Panagiotis Alexopoulos ◽  
Amalia Tsolakidou ◽  
Liang-Hao Guo ◽  
Gjermund Henriksen ◽  
...  

The secretase BACE1 is fundamentally involved in the development of cerebral amyloid pathology in Alzheimer's disease (AD). It has not been studied so far to what extent BACE1 activity in cerebrospinal fluid (CSF) mirrors in vivo amyloid load in AD. We explored associations between CSF BACE1 activity and fibrillar amyloid pathology as measured by carbon-11-labelled Pittsburgh Compound B positron emission tomography ([11C]PIB PET). [11C]PIB and CSF studies were performed in 31 patients with AD. Voxel-based linear regression analysis revealed significant associations between CSF BACE1 activity and [11C]PIB tracer uptake in the bilateral parahippocampal region, the thalamus, and the pons. Our study provides evidence for a brain region-specific correlation between CSF BACE1 activity and in-vivo fibrillar amyloid pathology in AD. Associations were found in areas close to the brain ventricles, which may have important implications for the use of BACE1 in CSF as a marker for AD pathology and for antiamyloid treatment monitoring.


BMC Medicine ◽  
2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Longfei Jia ◽  
Min Zhu ◽  
Jianwei Yang ◽  
Yana Pang ◽  
Qi Wang ◽  
...  

Abstract Background The most common biomarkers of Alzheimer’s disease (AD) are amyloid β (Aβ) and tau, detected in cerebrospinal fluid (CSF) or with positron emission tomography imaging. However, these procedures are invasive and expensive, which hamper their availability to the general population. Here, we report a panel of microRNAs (miRNAs) in serum that can predict P-tau/Aβ42 in CSF and readily differentiate AD from other dementias, including vascular dementia (VaD), Parkinson disease dementia (PDD), behavioral variant frontotemporal dementia (bvFTD), and dementia with Lewy body (DLB). Methods RNA samples were extracted from the participant’s blood. P-tau/Aβ42 of CSF was examined for diagnostic purposes. A pilot study (controls, 21; AD, 23), followed by second (controls, 216; AD, 190) and third groups (controls, 153; AD, 151), is used to establish and verify a predictive model of P-tau/Aβ42 in CSF. The test is then applied to a fourth group of patients with different dementias (controls, 139; AD,155; amnestic mild cognitive impairment [aMCI], 55; VaD, 51; PDD, 53; bvFTD, 53; DLB, 52) to assess its diagnostic capacity. Results In the pilot study, 29 upregulated and 31 downregulated miRNAs in the AD group were found. In Dataset 2, these miRNAs were then included as independent variables in the linear regression model. A seven-microRNA panel (miR-139-3p, miR-143-3p, miR-146a-5p, miR-485-5p, miR-10a-5P, miR-26b-5p, and miR-451a-5p) accurately predicted values of P-tau/Aβ42 of CSF. In Datasets 3 and 4, by applying the predicted P-tau/Aβ42, the predictive model successfully differentiates AD from controls and VaD, PDD, bvFTD, and DLB. Conclusions This study suggests that the panel of microRNAs is a promising substitute for traditional measurement of P-tau/Aβ42 in CSF as an effective biomarker of AD.


2021 ◽  
Vol 79 (1) ◽  
pp. 225-235
Author(s):  
Maya Arvidsson Rådestig ◽  
Johan Skoog ◽  
Henrik Zetterberg ◽  
Jürgen Kern ◽  
Anna Zettergren ◽  
...  

Background: We have previously shown that older adults with preclinical Alzheimer’s disease (AD) pathology in cerebrospinal fluid (CSF) had slightly worse performance in Mini-Mental State Examination (MMSE) than participants without preclinical AD pathology. Objective: We therefore aimed to compare performance on neurocognitive tests in a population-based sample of 70-year-olds with and without CSF AD pathology. Methods: The sample was derived from the population-based Gothenburg H70 Birth Cohort Studies in Sweden. Participants (n = 316, 70 years old) underwent comprehensive cognitive examinations, and CSF Aβ-42, Aβ-40, T-tau, and P-tau concentrations were measured. Participants were classified according to the ATN system, and according to their Clinical Dementia Rating (CDR) score. Cognitive performance was examined in the CSF amyloid, tau, and neurodegeneration (ATN) categories. Results: Among participants with CDR 0 (n = 259), those with amyloid (A+) and/or tau pathology (T+, N+) showed similar performance on most cognitive tests compared to participants with A-T-N-. Participants with A-T-N+ performed worse in memory (Supra span (p = 0.003), object Delayed (p = 0.042) and Immediate recall (p = 0.033)). Among participants with CDR 0.5 (n = 57), those with amyloid pathology (A+) scored worse in category fluency (p = 0.003). Conclusion: Cognitively normal participants with amyloid and/or tau pathology performed similarly to those without any biomarker evidence of preclinical AD in most cognitive domains, with the exception of slightly poorer memory performance in A-T-N+. Our study suggests that preclinical AD biomarkers are altered before cognitive decline.


2021 ◽  
Vol 11 (2) ◽  
pp. 215
Author(s):  
Donovan A. McGrowder ◽  
Fabian Miller ◽  
Kurt Vaz ◽  
Chukwuemeka Nwokocha ◽  
Cameil Wilson-Clarke ◽  
...  

Alzheimer’s disease is a progressive, clinically heterogeneous, and particularly complex neurodegenerative disease characterized by a decline in cognition. Over the last two decades, there has been significant growth in the investigation of cerebrospinal fluid (CSF) biomarkers for Alzheimer’s disease. This review presents current evidence from many clinical neurochemical studies, with findings that attest to the efficacy of existing core CSF biomarkers such as total tau, phosphorylated tau, and amyloid-β (Aβ42), which diagnose Alzheimer’s disease in the early and dementia stages of the disorder. The heterogeneity of the pathophysiology of the late-onset disease warrants the growth of the Alzheimer’s disease CSF biomarker toolbox; more biomarkers showing other aspects of the disease mechanism are needed. This review focuses on new biomarkers that track Alzheimer’s disease pathology, such as those that assess neuronal injury (VILIP-1 and neurofilament light), neuroinflammation (sTREM2, YKL-40, osteopontin, GFAP, progranulin, and MCP-1), synaptic dysfunction (SNAP-25 and GAP-43), vascular dysregulation (hFABP), as well as CSF α-synuclein levels and TDP-43 pathology. Some of these biomarkers are promising candidates as they are specific and predict future rates of cognitive decline. Findings from the combinations of subclasses of new Alzheimer’s disease biomarkers that improve their diagnostic efficacy in detecting associated pathological changes are also presented.


2018 ◽  
Vol 29 (10) ◽  
pp. 4291-4302 ◽  
Author(s):  
Hang-Rai Kim ◽  
Peter Lee ◽  
Sang Won Seo ◽  
Jee Hoon Roh ◽  
Minyoung Oh ◽  
...  

Abstract Tau and amyloid β (Aβ), 2 key pathogenic proteins in Alzheimer’s disease (AD), reportedly spread throughout the brain as the disease progresses. Models of how these pathogenic proteins spread from affected to unaffected areas had been proposed based on the observation that these proteins could transmit to other regions either through neural fibers (transneuronal spread model) or through extracellular space (local spread model). In this study, we modeled the spread of tau and Aβ using a graph theoretical approach based on resting-state functional magnetic resonance imaging. We tested whether these models predict the distribution of tau and Aβ in the brains of AD spectrum patients. To assess the models’ performance, we calculated spatial correlation between the model-predicted map and the actual map from tau and amyloid positron emission tomography. The transneuronal spread model predicted the distribution of tau and Aβ deposition with significantly higher accuracy than the local spread model. Compared with tau, the local spread model also predicted a comparable portion of Aβ deposition. These findings provide evidence of transneuronal spread of AD pathogenic proteins in a large-scale brain network and furthermore suggest different contributions of spread models for tau and Aβ in AD.


Sign in / Sign up

Export Citation Format

Share Document