Background
Several studies have reported changes in the corpus callosum (CC) in Alzheimer’s disease. However, the involved region differed according to the study population and study group. Using deep learning technology, we ensured accurate analysis of the CC in Alzheimer’s disease.
Methods
We used the Open Access Series of Imaging Studies (OASIS) dataset to investigate changes in the CC. The individuals were divided into three groups using the Clinical Dementia Rating (CDR); 94 normal controls (NC) were not demented (NC group, CDR = 0), 56 individuals had very mild dementia (VMD group, CDR = 0.5), and 17 individuals were defined as having mild and moderate dementia (MD group, CDR = 1 or 2). Deep learning technology using a convolutional neural network organized in a U-net architecture was used to segment the CC in the midsagittal plane. Total CC length and regional magnetic resonance imaging (MRI) measurements of the CC were made.
Results
The total CC length was negatively associated with cognitive function. (beta = -0.139, p = 0.022) Among MRI measurements of the CC, the height of the anterior third (beta = 0.038, p <0.0001) and width of the body (beta = 0.077, p = 0.001) and the height (beta = 0.065, p = 0.001) and area of the splenium (beta = 0.059, p = 0.027) were associated with cognitive function. To distinguish MD from NC and VMD, the receiver operating characteristic analyses of these MRI measurements showed areas under the curves of 0.65–0.74. (total CC length = 0.705, height of the anterior third = 0.735, width of the body = 0.714, height of the splenium = 0.703, area of the splenium = 0.649).
Conclusions
Among MRI measurements, total CC length, the height of the anterior third and width of the body, and the height and area of the splenium were associated with cognitive decline. They had fair diagnostic validity in distinguishing MD from NC and VMD.