scholarly journals Potential Role of microRNA-183 as a Tumor Suppressor in Hepatocellular Carcinoma

2018 ◽  
Vol 51 (5) ◽  
pp. 2065-2072 ◽  
Author(s):  
Wei Bian ◽  
Hongfei Zhang ◽  
Miao Tang ◽  
Shaojun Zhang ◽  
Lichao Wang ◽  
...  

Background/Aims: Disseminated tumors, known as metastases, are responsible for ninety-percent of mortality due to cancer. Epithelial to mesenchymal transition, a phenomenon required for morphological conversion of non-motile discoid shaped epithelial cells to highly motile spindle-shaped mesenchymal cells, is thought to be a pre-requisite for metastatic progression. Metastasis-associated 1 (MTA1) protein is a prime inducer of EMT and metastatic progression in all solid tumors including hepatocellular carcinoma (HCC). However, the molecular mechanisms that regulate the expression and function of MTA1 in HCC have not been elucidated. Methods: In silico prediction algorithms were used to find microRNAs (miRNAs) that may target MTA1. We examined the relationship between the expression of MTA1 and miR-183 using quantitative real time PCR. We also determined the levels of the MTA1 protein using immunohistochemistry. Reporter assays, in the presence and absence of the miR-183 mimic, were used to confirm MTA1 as a bona fide target of miR183. The effect of miR-183 on HCC pathogenesis was determined using a combination of in vitro migration and invasion assay, together with in vivo xenograft experiments. The correlation between miR-183 and MTA1 expression was also studied in samples from HCC patients, and in The Cancer Genome Atlas dataset. Results: Analysis of the sequence database revealed that MTA1 is a putative target of miR-183. MTA1 protein and RNA expression showed opposite trends to miR-183 expression in breast, renal, prostate, and testicular tissue samples from cancer patients, and in the metastatic HCC cell line HepG2. An inverse correlation was also observed between MTA1 (high) and miR-183 (low) expression within samples from HHC patients and in the TCGA dataset. Reporter assays in HepG2 cells showed that miR-183 could inhibit translation of a reporter harboring the wild-type, but not the mutant miR-183 3’-untranslated region (UTR). In addition, miR-183 significantly inhibited in vitro migration and invasion in HepG2 cells, and in vivo hepatic metastasis. Conclusion: Our results reveal a novel post-transcriptional regulatory mechanism for MTA1 expression via miR-183, which is suppressed during HCC pathogenesis.

2021 ◽  
Vol 23 (1) ◽  
pp. 104
Author(s):  
Yanhong Wang ◽  
Na Li ◽  
Yanping Zheng ◽  
Anqing Wang ◽  
Chunlei Yu ◽  
...  

The survival and prognosis of hepatocellular carcinoma (HCC) are poor, mainly due to metastasis. Therefore, insights into the molecular mechanisms underlying HCC invasion and metastasis are urgently needed to develop a more effective antimetastatic therapy. Here, we report that KIAA1217, a functionally unknown macromolecular protein, plays a crucial role in HCC metastasis. KIAA1217 expression was frequently upregulated in HCC cell lines and tissues, and high KIAA1217 expression was closely associated with shorter survival of patients with HCC. Overexpression and knockdown experiments revealed that KIAA1217 significantly promoted cell migration and invasion by inducing epithelial-mesenchymal transition (EMT) in vitro. Consistently, HCC cells overexpressing KIAA1217 exhibited markedly enhanced lung metastasis in vivo. Mechanistically, KIAA1217 enhanced EMT and accordingly promoted HCC metastasis by interacting with and activating JAK1/2 and STAT3. Interestingly, KIAA1217-activated p-STAT3 was retained in the cytoplasm instead of translocating into the nucleus, where p-STAT3 subsequently activated the Notch and Wnt/β-catenin pathways to facilitate EMT induction and HCC metastasis. Collectively, KIAA1217 may function as an adaptor protein or scaffold protein in the cytoplasm and coordinate multiple pathways to promote EMT-induced HCC metastasis, indicating its potential as a therapeutic target for curbing HCC metastasis.


2021 ◽  
Vol 11 ◽  
Author(s):  
Wenzhou Ding ◽  
Ye Fan ◽  
Wenbo Jia ◽  
Xiongxiong Pan ◽  
Guoyong Han ◽  
...  

ObjectivesFeline sarcoma-related protein (FER) is known to play a critical regulatory role in several carcinomas. However, the exact biological function of FER in hepatocellular carcinoma (HCC) still needs to be investigated. The primary objective of this research was to investigate the unknown function and molecular mechanisms of FER in HCC.Materials and MethodsThe expression level of FER in HCC tissue samples and cells was examined by RT-qPCR, immunohistochemistry and western blot. Cellular and animal experiments were used to explore the effect of FER on the proliferative and metastatic capacities of HCC cells. The crosstalk between FER and NF-κB signaling was explored by western blot. The upstream factors that regulate FER were evaluated through dual-luciferase experiments and western blot assays.ResultsFER was overexpressed in HCC specimens and HCC cell lines. FER expression levels were positively associated with unfavorable clinicopathological characteristics. The higher the expression of FER was, the worse the overall survival of HCC patients was. The results of loss-of-function and gain-of-function experiments indicated that knockdown of FER decreased, while overexpression of FER increased, the proliferation, invasion and metastasis of HCC cells in vitro and in vivo. Mechanistically, we found that FER activated the NF-κB signaling pathway and stimulated epithelial-to-mesenchymal transition (EMT). We also found that FER was directly regulated by miR-206, and the downregulation of miR-206 was associated with proliferation and metastatic progression in HCC.ConclusionsThe present research was the first to reveal that a decrease in miR-206 levels results in an increase in FER expression in HCC, leading to enhanced cell growth and metastatic abilities via activation of the NF-κB signaling pathway.


2018 ◽  
Vol 243 (7) ◽  
pp. 645-654 ◽  
Author(s):  
Yi-Quan Yan ◽  
Juan Xie ◽  
Jing-Fu Wang ◽  
Zhao-Feng Shi ◽  
Xiang Zhang ◽  
...  

Hepatocellular carcinoma (HCC) is one of the most malignant diseases worldwide. The unfavorable clinical outcome and poor prognosis are due to high rates of recurrence and metastasis after treatments. Some scholars of traditional Chinese medicine suggested that endogenous wind-evil had played an important role in metastasis of malignant tumor. Therefore, the drug of dispelling wind-evil could be used to prevent cancer metastasis and improve the poor prognosis. So we wondered whether Scorpion, one of the most important wind calming drugs, has antitumor effect especially in epithelial–mesenchymal transition (EMT) and metastasis of HCC in this research. We found that Scorpion-medicated serum could inhibit proliferation, induce apoptosis, and decrease migration and invasion capacity of Hepa1-6 cells in vitro. Meanwhile, we observed that water decoction of Scorpion restrained tumor growth and metastasis in nude mouse of HCC metastasis models. Further experiments showed that Scorpion could suppress EMT, which is characterized by increased epithelial marker E-cadherin expression and decreased mesenchymal markers N-cadherin and Snail expression following Scorpion treatment both in vitro and in vivo. These results suggested that the Scorpion could inhibit Hepa1-6 cells’ invasion and metastasis in part by reversing EMT and providing a possible potential approach for preventing HCC metastasis. Impact statement The unfavorable clinical outcome and poor prognosis of hepatocellular carcinoma (HCC) are due to high rates of recurrence and metastasis after treatments. Here we found Scorpion, one of the most important wind calming drugs, has antitumor effect. Scorpion-medicated serum inhibited the proliferation, induced apoptosis, and decreased migration and invasion capacity of Hepa1-6 cells in vitro. Water decoction of Scorpion restrained tumor growth and metastasis in nude mouse of HCC metastasis models. Further experiments showed that Scorpion could suppress EMT of HCC both in vitro and in vivo. Our results suggested that the Scorpion could inhibit Hepa1-6 cells’ invasion and metastasis in part by reversing EMT and providing a possible potential approach for preventing HCC metastasis.


2019 ◽  
Vol 2019 ◽  
pp. 1-14
Author(s):  
Lian Liu ◽  
Jia-Qi Sheng ◽  
Mu-Ru Wang ◽  
Yun Gan ◽  
Xiao-Li Wu ◽  
...  

Primary cilia are organelles protruding from cell surface into environment that function in regulating cell cycle and modulating cilia-related signal. Primary ciliogenesis and autophagy play important roles in tumorigenesis. However, the functions and interactions between primary cilia and autophagy in hepatocellular carcinoma (HCC) have not been reported yet. Here, we aimed to investigate the relationship and function of primary cilia and autophagy in HCC. In vitro, we showed that serum starvation stimuli could trigger primary ciliogenesis in HCC cells. Blockage of primary ciliogenesis by IFT88 silencing enhanced the proliferation, migration, and invasion ability of HCC cells. In addition, inhibition of primary cilia could positively regulate autophagy. However, the proliferation, migration, and invasion ability which were promoted by IFT88 silencing could be partly reversed by inhibition of autophagy. In vivo, interference of primary cilia led to acceleration of tumor growth and increase of autophagic flux in xenograft HCC mouse models. Moreover, IFT88 high expression or ATG7 low expression in HCC tissues was correlated with longer survival time indicated by the Cancer Genome Atlas (TCGA) analysis. In conclusion, our study demonstrated that blockage of primary ciliogenesis by IFT88 silencing had protumor effects through induction of autophagy in HCC. These findings define a newly recognized role of primary cilia and autophagy in HCC.


2020 ◽  
Vol 2020 ◽  
pp. 1-12
Author(s):  
Qingmin Chen ◽  
Ludong Tan ◽  
Zhe Jin ◽  
Yahui Liu ◽  
Ze Zhang

Cellular retinoic acid-binding protein 2 (CRABP2) binds retinoic acid (RA) in the cytoplasm and transports it into the nucleus, allowing for the regulation of specific downstream signal pathway. Abnormal expression of CRABP2 has been detected in the development of several tumors. However, the role of CRABP2 in hepatocellular carcinoma (HCC) has never been revealed. The current study aimed to investigate the role of CRABP2 in HCC and illuminate the potential molecular mechanisms. The expression of CRABP2 in HCC tissues and cell lines was detected by western blotting and immunohistochemistry assays. Our results demonstrated that the expression levels of CRABP2 in HCC tissues were elevated with the tumor stage development, and it was also elevated in HCC cell lines. To evaluate the function of CRABP2, shRNA-knockdown strategy was used in HCC cells. Cell proliferation, metastasis, and apoptosis were analyzed by CCK-8, EdU staining, transwell, and flow cytometry assays, respectively. Based on our results, knockdown of CRABP2 by shRNA resulted in the inhibition of tumor proliferation, migration, and invasion in vitro, followed by increased tumor apoptosis-related protein expression and decreased ERK/VEGF pathway-related proteins expression. CRABP2 silencing in HCC cells also resulted in the failure to develop tumors in vivo. These results provide important insights into the role of CRABP2 in the development and development of HCC. Based on our findings, CRABP2 may be used as a novel diagnostic biomarker, and regulation of CRABP2 in HCC may provide a potential molecular target for the therapy of HCC.


2020 ◽  
Author(s):  
Nan Yang ◽  
Tianxiang Chen ◽  
Bowen Yao ◽  
Liang Wang ◽  
Runkun Liu ◽  
...  

Abstract Background: Long non-coding RNAs (lncRNAs) have obtained growing attention due to their potential effects as novel regulators in various tumors. This study aimed to investigate the expression and roles of lncRNA ZFPM2-AS1 in the progression of hepatocellular carcinoma (HCC). Methods: Transwell was used to determine migration and invasion of HCC cells in vitro. The lung metastasis mouse model was established to detect tumor metastasis of HCC in vivo. The direct binding of miR-3612 to 3'UTR of DAM15 was confirmed by luciferase reporter assay. The expression of ZFPM2-AS1 and miR-3612 in HCC specimens and cell lines were detected by real-time PCR. The correlation among ZFPM2-AS1 and miR-3612 were disclosed by a dual-luciferase reporter assay, RIP assay and biotin pull-down assay.Results: In present study, we found that ZFPM2-AS1 was up-regulated in HCC tissues and cells and its upregulation was associated with TNM stage, vascular invasion, and poor prognosis of HCC patients. Functionally, gain- and loss-of-function experiments indicated that ZFPM2-AS1 promoted cell migration, invasion and EMT progress in vitro and in vivo. ZFPM2-AS1 could function as a competing endogenous RNA (ceRNA) by sponging miR-3612 in HCC cells. Mechanically, miR-3612 inhibited HCC metastasis and alternation of miR-3612 reversed the promotive effects of ZFPM2-AS1 on HCC cells. In addition, we confirmed that ADAM15 was a direct target of miR-3612 in HCC and mediated the biological effects of miR-3612 and ZFPM2-AS1 in HCC. Curcumin, an active derivative from turmeric, exerts its anticancer effects through ZFPM2-AS1/miR-3612/ADAM15 pathway. Our data identified ZFPM2-AS1 as a novel oncogenic lncRNA and correlated malignant clinical outcomes in HCC patients. Conclusions: ZFPM2-AS1 performed as oncogenic role via targeting miR-3612 and subsequently promoted ADAM15 expression in HCC. Our results revealed that ZFPM2-AS1 could be a potential prognostic biomarker and therapeutic target for HCC.


2021 ◽  
Vol 13 (1) ◽  
Author(s):  
Dandan Li ◽  
Jiawei Zhang ◽  
Jing Yang ◽  
Jie Wang ◽  
Runling Zhang ◽  
...  

AbstractCircRNA mitochondrial tRNA translation optimization 1 (circMTO1) functions as a tumor suppressor usually and is related to the progression of many tumors, including hepatocellular carcinoma (HCC). CircMTO1 is downregulated in HCC as compared to adjacent nontumor tissue, which may suppress the HCC progression by certain signal pathways. However, the underlying signal pathway remains largely unknown. The interactions between circMTO1 and miR-541-5p were predicted through bioinformatics analysis and verified using pull-down and dual-luciferase reporter assays. CCK-8, transwell, and apoptosis assays were performed to determine the effect of miR-541-5p on HCC progression. Using bioinformatic analysis, dual-luciferase reporter assay, RT-qPCR, and western blot, ZIC1 was found to be the downstream target gene of miR-541-5p. The regulatory mechanisms of circMTO1, miR-541-5p, and ZIC1 were investigated using in vitro and in vivo rescue experiments. The results depicted that silencing circMTO1 or upregulating miR-541-5p expression facilitated HCC cell proliferation, migration, and invasion and inhibited apoptosis. CircMTO1 silencing upregulated the expression of downstream ZIC1 regulators of the Wnt/β-catenin pathway markers, β-catenin, cyclin D1, c-myc, and the mesenchymal markers N-cadherin, Vimentin, and MMP2, while the epithelial marker E-cadherin was downregulated. MiR-541-5p knockdown had the opposite effect and reversed the effect of circMTO1 silencing on the regulation of downstream ZIC1 regulators. Intratumoral injection of miR-541-5p inhibitor suppressed tumor growth and reversed the effect of circMTO1 silencing on the promotion of tumor growth in HCC. These findings indicated that circMTO1 suppressed HCC progression via the circMTO1/ miR-541-5p/ZIC1 axis by regulating Wnt/β-catenin signaling and epithelial-to-mesenchymal transition, making it a novel therapeutic target.


2018 ◽  
Vol 96 (3) ◽  
pp. 326-331 ◽  
Author(s):  
Ping He ◽  
Xiaojie Jin

Objective: The aim of this study was to investigate the role of SOX10 in nasopharyngeal carcinoma (NPC) and the underlying molecular mechanisms. Methods: The expression of SOX10 was initially assessed in human NPC tissues and a series of NPC cell lines through quantitative real-time PCR (qRT-PCR) and Western blot. Then, cell proliferation, cycle, migration, and the invasiveness of NPC cells with knockdown of SOX10 were examined by MTT, flow cytometry, and Transwell migration and invasion assays, respectively. Finally, nude mice tumorigenicity experiments were performed to evaluate the effects of SOX10 on NPC growth and metastasis in vivo. Results: SOX10 was significantly increased in NPC tissues and cell lines. In-vitro experiments revealed that loss of SOX10 obviously inhibited cell proliferation, migration, and invasiveness, as well as the epithelial–mesenchymal transition (EMT) process in NPC cells. In-vivo experiments further demonstrated that disrupted SOX10 expression restrained NPC growth and metastasis, especially in lung and liver. Conclusion: Taken together, our data confirmed the role of SOX10 as an oncogene in NPC progression, and revealed that SOX10 may serve as a novel biomarker for diagnosis of NPC, as well as a potential therapeutic target against this disease.


Author(s):  
Yunhee Lee ◽  
Dongjoon Ko ◽  
Junghwa Yoon ◽  
Younghoon Lee ◽  
Semi Kim

Abstract Background TMEM52B is a novel gene broadly expressed in a variety of normal human tissues. However, the biological function of TMEM52B expression in cancer is largely unknown. Methods The effects of TMEM52B on tumor growth and metastasis were investigated in vitro and in vivo, and the underlying biological and molecular mechanisms involved in this process were evaluated. Clinical datasets from KmPlotter and The Cancer Genome Atlas (TCGA) were analyzed in relation to TMEM52B expression and function. Results Suppression of TMEM52B in colon cancer cells promoted cancer cell epithelial-mesenchymal transition (EMT), invasion, and survival in vitro. Similarly, in vivo studies showed increased tumor growth and circulating tumor cell survival (early metastasis). ERK1/2, JNK, and AKT signaling pathways were involved in TMEM52B suppression-induced invasiveness and cell survival. TMEM52B suppression promoted activation and internalization of epidermal growth factor receptor (EGFR) with enhanced downstream signaling activity, leading to enhanced cell survival and invasion. In addition, TMEM52B suppression reduced E-cadherin stability, likely due to a reduced association between it and E-cadherin, which led to enhanced β-catenin transcriptional activity. Concomitantly, TMEM52B suppression promoted generation of soluble E-cadherin fragments, contributing to the activation of EGFR. Clinical data showed that high TMEM52B expression correlated with increased patient survival in multiple types of cancer, including breast, lung, kidney, and rectal cancers, and suggested a correlation between TMEM52B and E-cadherin. Conclusions These findings suggest that TMEM52B is a novel modulator of the interplay between E-cadherin and EGFR. It is possible that TMEM52B functions as a tumor-suppressor that could potentially be used as a novel prognostic marker for cancer.


2019 ◽  
Author(s):  
Yong Li ◽  
Hong-Bin Ma ◽  
Chang-Ying Shi ◽  
Fei-Ling Feng ◽  
Liang Yang

AbstractIn recent years, mounting studies have shown that ACTB is closely related to various tumors. Although ACTB is dysregulated in numerous cancer types, limited data are available on the potential function and mechanism of ACTB in hepatocellular carcinoma (HCC). This study evaluated the expression and biological roles of mutant ACTB mRNA 3′UTR in HCC. Transcriptome sequence and qRT-PCR analysis determined that mutant ACTB mRNA 3′UTR was high expression in HCC tissues. Luciferase reporter assay showed that the ACTB mRNA 3′UTR mutations made it easier to interact with miR-1 and miR-29a. Moreover, mutant ACTB mRNA 3′UTR regulated miR-1 and miR-29a degradation via AGO2. Furthermore, mutant ACTB mRNA 3′UTR promoted hepatocellular carcinoma cells migration and invasionin vitroandin vivoby up-regulating miR-1 target gene MET and miR-29a target gene MCL1. In a word, our study demonstrates that 3′UTR of ACTB plays a key role in the tumor growth of hepatocellular carcinoma (HCC) and highlights the molecular mechanisms of ACTB-involved cancer growth and development.


Sign in / Sign up

Export Citation Format

Share Document