scholarly journals TMEM52B suppression promotes cancer cell survival and invasion through modulating E-cadherin stability and EGFR activity

Author(s):  
Yunhee Lee ◽  
Dongjoon Ko ◽  
Junghwa Yoon ◽  
Younghoon Lee ◽  
Semi Kim

Abstract Background TMEM52B is a novel gene broadly expressed in a variety of normal human tissues. However, the biological function of TMEM52B expression in cancer is largely unknown. Methods The effects of TMEM52B on tumor growth and metastasis were investigated in vitro and in vivo, and the underlying biological and molecular mechanisms involved in this process were evaluated. Clinical datasets from KmPlotter and The Cancer Genome Atlas (TCGA) were analyzed in relation to TMEM52B expression and function. Results Suppression of TMEM52B in colon cancer cells promoted cancer cell epithelial-mesenchymal transition (EMT), invasion, and survival in vitro. Similarly, in vivo studies showed increased tumor growth and circulating tumor cell survival (early metastasis). ERK1/2, JNK, and AKT signaling pathways were involved in TMEM52B suppression-induced invasiveness and cell survival. TMEM52B suppression promoted activation and internalization of epidermal growth factor receptor (EGFR) with enhanced downstream signaling activity, leading to enhanced cell survival and invasion. In addition, TMEM52B suppression reduced E-cadherin stability, likely due to a reduced association between it and E-cadherin, which led to enhanced β-catenin transcriptional activity. Concomitantly, TMEM52B suppression promoted generation of soluble E-cadherin fragments, contributing to the activation of EGFR. Clinical data showed that high TMEM52B expression correlated with increased patient survival in multiple types of cancer, including breast, lung, kidney, and rectal cancers, and suggested a correlation between TMEM52B and E-cadherin. Conclusions These findings suggest that TMEM52B is a novel modulator of the interplay between E-cadherin and EGFR. It is possible that TMEM52B functions as a tumor-suppressor that could potentially be used as a novel prognostic marker for cancer.

2021 ◽  
Vol 12 (2) ◽  
Author(s):  
Chun Cheng ◽  
Jun Yang ◽  
Si-Wei Li ◽  
Guofu Huang ◽  
Chenxi Li ◽  
...  

AbstractHistone deacetylases (HDACs) are involved in tumor progression, and some have been successfully targeted for cancer therapy. The expression of histone deacetylase 4 (HDAC4), a class IIa HDAC, was upregulated in our previous microarray screen. However, the role of HDAC4 dysregulation and mechanisms underlying tumor growth and metastasis in nasopharyngeal carcinoma (NPC) remain elusive. Here, we first confirmed that the HDAC4 levels in primary and metastatic NPC tissues were significantly increased compared with those in normal nasopharyngeal epithelial tissues and found that high HDAC4 expression predicted a poor overall survival (OS) and progression-free survival (PFS). Functionally, HDAC4 accelerated cell cycle G1/S transition and induced the epithelial-to-mesenchymal transition to promote NPC cell proliferation, migration, and invasion in vitro, as well as tumor growth and lung metastasis in vivo. Intriguingly, knockdown of N-CoR abolished the effects of HDAC4 on the invasion and migration abilities of NPC cells. Mechanistically, HDAC3/4 binds to the E-cadherin promoter to repress E-cadherin transcription. We also showed that the HDAC4 inhibitor tasquinimod suppresses tumor growth in NPC. Thus, HDAC4 may be a potential diagnostic marker and therapeutic target in patients with NPC.


2018 ◽  
Vol 51 (5) ◽  
pp. 2065-2072 ◽  
Author(s):  
Wei Bian ◽  
Hongfei Zhang ◽  
Miao Tang ◽  
Shaojun Zhang ◽  
Lichao Wang ◽  
...  

Background/Aims: Disseminated tumors, known as metastases, are responsible for ninety-percent of mortality due to cancer. Epithelial to mesenchymal transition, a phenomenon required for morphological conversion of non-motile discoid shaped epithelial cells to highly motile spindle-shaped mesenchymal cells, is thought to be a pre-requisite for metastatic progression. Metastasis-associated 1 (MTA1) protein is a prime inducer of EMT and metastatic progression in all solid tumors including hepatocellular carcinoma (HCC). However, the molecular mechanisms that regulate the expression and function of MTA1 in HCC have not been elucidated. Methods: In silico prediction algorithms were used to find microRNAs (miRNAs) that may target MTA1. We examined the relationship between the expression of MTA1 and miR-183 using quantitative real time PCR. We also determined the levels of the MTA1 protein using immunohistochemistry. Reporter assays, in the presence and absence of the miR-183 mimic, were used to confirm MTA1 as a bona fide target of miR183. The effect of miR-183 on HCC pathogenesis was determined using a combination of in vitro migration and invasion assay, together with in vivo xenograft experiments. The correlation between miR-183 and MTA1 expression was also studied in samples from HCC patients, and in The Cancer Genome Atlas dataset. Results: Analysis of the sequence database revealed that MTA1 is a putative target of miR-183. MTA1 protein and RNA expression showed opposite trends to miR-183 expression in breast, renal, prostate, and testicular tissue samples from cancer patients, and in the metastatic HCC cell line HepG2. An inverse correlation was also observed between MTA1 (high) and miR-183 (low) expression within samples from HHC patients and in the TCGA dataset. Reporter assays in HepG2 cells showed that miR-183 could inhibit translation of a reporter harboring the wild-type, but not the mutant miR-183 3’-untranslated region (UTR). In addition, miR-183 significantly inhibited in vitro migration and invasion in HepG2 cells, and in vivo hepatic metastasis. Conclusion: Our results reveal a novel post-transcriptional regulatory mechanism for MTA1 expression via miR-183, which is suppressed during HCC pathogenesis.


2017 ◽  
Vol 41 (3) ◽  
pp. 1135-1146 ◽  
Author(s):  
Yang Du ◽  
Xiu-heng Liu ◽  
Heng-cheng Zhu ◽  
Lei Wang ◽  
Jin-zhuo Ning ◽  
...  

Background/Aims: MicroRNAs (miRNAs, miRs) have emerged as important post-transcriptional regulators in various cancers. miR-543 has been reported to play critical roles in hepatocellular carcinoma and colorectal cancer, however, the role of miR-543 in the pathogenesis of prostate cancer has not been fully understood. Methods: Expression of miR-543 and Raf Kinase Inhibitory Protein (RKIP) in clinical prostate cancer specimens, two prostate cancer cell lines, namely LNCAP and C4-2B, were determined. The effects of miR-543 on proliferation and metastasis of tumor cells were also investigated with both in vitro and in vivo studies. Results: miR-543 was found to be negatively correlated with RKIP expression in clinical tumor samples and was significantly upregulated in metastatic prostate cancer cell line C4-2B compared with parental LNCAP cells. Further studies identified RKIP as a direct target of miR-543. Overexpression of miR-543 downregulated RKIP expression and promoted the proliferation and metastasis of cancer cells, whereas knockdown of miR-543 increased expression of RKIP and suppressed the proliferation and metastasis of cancer cells in vitro and in vivo. Conclusion: Our study demonstrates that miR-543 promotes the proliferation and metastasis of prostate cancer via targeting RKIP.


2021 ◽  
Author(s):  
Yuchong Zhao ◽  
Yun Wang ◽  
Wei Chen ◽  
Shuya Bai ◽  
Wang Peng ◽  
...  

Abstract Background: Due to the lack of effective interference options, early metastasis remains a major cause of pancreatic ductal adenocarcinoma (PDAC) recurrence and mortality. However, the molecular mechanism of early metastasis is largely unknown. We characterize the function of eukaryotic translation initiation factors (eIFs) in Pancreatic cancer cell epithelial mesenchymal-transition (EMT) and metastasis, to investigate whether it is effective to inhibit EMT and metastasis by joint interference of eIFs and downstream c-MYC. Methods: We used the data of The Cancer Genome Atlas (TCGA) and Genome Tissue Expression (GTEx) to analyze the expression level of eIF4A1 in PDAC tissues, and further validated in a microarray containing 53 PDAC samples. Expression regulation and pharmacological inhibition of eIF4A1/c-MYC was performed to determine their role in migration, invasion, and metastasis in pancreatic cancer cells in vitro and in vivo.Results: Elevated expression of eIF4A1 was positively correlated with lymph node infiltration, tumor size, and indicated a poor prognosis. eIF4A1 decreased E-cadherin expression through c-MYC/miR-9 axis. Ablation of eIF4A1 and c-MYC decreased the EMT and metastasis capabilities of pancreatic cancer cells. Upregulation of eIF4A1 could attenuate the inhibition of EMT and metastasis induced by c-MYC downregulation. Single-use of eIF4A1 inhibitor Rocaglamide (RocA) or c-MYC inhibitor Mycro3 and joint intervention all significantly the EMT level of pancreatic cancer cells in vitro. However, the efficiency and safety of RocA single-use were not inferior to joint use in vivo. Conclusion: The results demonstrated that overexpression of eIF4A1 downregulated E-cadherin through c-MYC/miR-9 axis, which promoted EMT and metastasis of pancreatic cancer cells. Despite the potential loop between eIF4A1 and c-MYC existing, RocA single strategy was a promising therapy for the inhibition of eIF4A1 induced PDAC metastasis.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Yuchong Zhao ◽  
Yun Wang ◽  
Wei Chen ◽  
Shuya Bai ◽  
Wang Peng ◽  
...  

Abstract Background Owing to the lack of effective treatment options, early metastasis remains the major cause of pancreatic ductal adenocarcinoma (PDAC) recurrence and mortality. However, the molecular mechanism of early metastasis is largely unknown. We characterized the function of eukaryotic translation initiation factors (eIFs) in epithelial-mesenchymal-transition (EMT) and metastasis in pancreatic cancer cells to investigate whether eIFs and downstream c-MYC affect EMT and metastasis by joint interference. Methods We used The Cancer Genome Atlas (TCGA) and Genome Tissue Expression (GTEx) databases to analyze eIF4A1 expression in PDAC tissues and further validated the findings with a microarray containing 53 PDAC samples. Expression regulation and pharmacological inhibition of eIF4A1 and c-MYC were performed to determine their role in migration, invasion, and metastasis in pancreatic cancer cells in vitro and in vivo. Results Elevated eIF4A1 expression was positively correlated with lymph node infiltration, tumor size, and indicated a poor prognosis. eIF4A1 decreased E-cadherin expression through the c-MYC/miR-9 axis. Loss of eIF4A1 and c-MYC decreased the EMT and metastasis capabilities of pancreatic cancer cells, whereas upregulation of eIF4A1 attenuated the inhibition of EMT and metastasis induced by c-MYC downregulation. Treatment with the eIF4A1 inhibitor rocaglamide (RocA) or the c-MYC inhibitor Mycro3 either alone or in combination significantly decreased the expression level of EMT markers in pancreatic cancer cells in vitro. However, the efficiency and safety of RocA alone were not inferior to those of the combination treatment in vivo. Conclusion Overexpression of eIF4A1 downregulated E-cadherin expression through the c-MYC/miR-9 axis, which promoted EMT and metastasis of pancreatic cancer cells. Despite the potential feedback loop between eIF4A1 and c-MYC, RocA monotherapy is a promising treatment inhibiting eIF4A1-induced PDAC metastasis.


Cancers ◽  
2020 ◽  
Vol 12 (3) ◽  
pp. 528 ◽  
Author(s):  
Lei Gao ◽  
Chaochao Ge ◽  
Senzhen Wang ◽  
Xiaojuan Xu ◽  
Yongli Feng ◽  
...  

Colorectal cancer (CRC) is one of the most prevalent cancers due to its frequency and high rate of mortality. Polyamine-vectorized anticancer drugs possess multiple biological properties. Of these drugs, 9F has been shown to inhibit tumor growth and the metastasis of hepatocellular carcinoma. This current study aims to investigate the effects of 9F on CRC and determine its molecular mechanisms of action. Our findings demonstrate that 9F inhibits CRC cell growth by inducing apoptosis and cell cycle arrest, and suppresses migration, invasion and angiogenesis in vitro, resulting in the inhibition of tumor growth and metastasis in vivo. Based on RNA-seq data, further bioinformatic analyses suggest that 9F exerts its anticancer activities through p53 signaling, which is responsible for the altered expression of key regulators of the cell cycle, apoptosis, the epithelial-to-mesenchymal transition (EMT), and angiogenesis. In addition, 9F is more effective than amonafide against CRC. These results show that 9F can be considered as a potential strategy for CRC treatment.


2020 ◽  
Author(s):  
Xiaoding Hu ◽  
Emilly S Villodre ◽  
Richard Larson ◽  
Omar M Rahal ◽  
Xiaoping Wang ◽  
...  

ABSTRACTInflammatory breast cancer (IBC) is a clinically distinct and highly aggressive form of breast cancer with rapid onset and a strong propensity to metastasize. The molecular mechanisms underlying the aggressiveness and metastatic propensity of IBC are largely unknown. Herein, we report that decorin (DCN), a small leucine-rich extracellular matrix proteoglycan, is downregulated in tumors from patients with IBC. Overexpression of DCN in IBC cells markedly decreased migration, invasion, and cancer stem cells in vitro and inhibited IBC tumor growth and metastasis in vivo. Mechanistically, DCN functioned as a suppressor of invasion and tumor growth in IBC by destabilizing E-cadherin and inhibiting EGFR/ERK signaling. DCN physically binds E-cadherin in IBC cells and accelerates its degradation through an autophagy-linked lysosomal pathway. We established that DCN inhibits tumorigenesis and metastasis in IBC cells by negatively regulating the E-cadherin/EGFR/ERK axis. Our findings offer a potential therapeutic strategy for IBC, and provide a novel mechanism for IBC pathobiology.


2020 ◽  
Author(s):  
Gabriella C. Russo ◽  
Michelle N. Karl ◽  
David Clark ◽  
Julie Cui ◽  
Ryan Carney ◽  
...  

ABSTRACTThe loss of the intercellular adhesion molecule E-cadherin is a hallmark of the epithelial-mesenchymal transition (EMT), which promotes a transition of cancer cells to a migratory and invasive phenotype. E-cadherin is associated with a decrease in cell proliferation in normal cells. Here, using physiologically relevant 3D in vitro models, we find that E-cadherin induces hyper-proliferation in breast cancer cells through activation of the Raf/MEK/ERK signaling pathway. These results were validated and consistent across multiple in vivo models of primary tumor growth and metastatic outgrowth. E-cadherin expression dramatically increases tumor growth and, without affecting the ability of cells to extravasate and colonize the lung, significantly increases macrometastasis formation via cell proliferation at the distant site. Pharmacological inhibition of MEK1/2, blocking phosphorylation of ERK in E-cadherin-expressing cells, significantly depresses both tumor growth and macrometastasis. This work suggests a novel role of E-cadherin in tumor progression and identifies a potential new target to treat hyper-proliferative breast tumors.SUMMARYE-cadherin, an extensively studied transmembrane molecule ubiquitously expressed in normal epithelial tissues, promotes and maintains intercellular adhesion. In cancer, the loss of adhesion molecule E-cadherin is associated with onset of invasion via epithelial-to-mesenchymal transition (EMT) process.1 EMT consists of a highly orchestrated cascade of molecular events where epithelial cells switch from a non-motile phenotype to an invasive, migratory phenotype accompanied by a change in cell morphology.1,2 These processes are believed to then trigger metastasis in carcinomas (cancers of epithelial origin). Moreover, the expression of intercellular adhesion molecule E-cadherin (E-cad) is associated with a decrease in cell proliferation in normal cells. Classical experiments in fibroblasts and epithelial cells show that the expression of E-cad not only promotes cell-cell adhesion, but also reduces cell proliferation and onset of apoptosis.3,4 Altogether these results have long supported that E-cad acts as a tumor suppressor gene.1,2However, despite its role in cell-adhesion the requirement for loss of E-cad in metastasis has recently been re-assessed.5,6,7,8These investigations focus on E-cad’s role in EMT, even though the relationship between E-cad and proliferation is just as intriguing. While E-cad has been shown to have anit-proliferative effects in normal cells, E-cad also helps maintain a pluripotent and proliferative phenotype in stem cells, and notably is lost during differentiation, a non-proliferative step of stem cell progression.9,10 Yet, despite potentially important implications in our understanding of tumor progression, whether E-cad expression affects growth in cancer cells remains mostly unexplored.Here, utilizing a physiologically relevant 3D in vitro model and multiple in vivo models, we studied the impact of E-cad on cell proliferation at the primary tumor site and proliferation at a secondary site. Remarkably, E-cad upregulates multiple proliferation pathways, including hyper-activation of the ERK cascade within the greater MAPKinase pathway, resulting in a dramatic increase in cell proliferation in vitro and tumor growth in vivo. When the phosphorylation of ERK is blocked utilizing a MEK1/2 inhibitor, PD032590111, this effect is reversed in vitro and in vivo. Thus, E-cad plays an oncogenic role in tumorigenesis and merits evaluation as a potential new drug target.


Cancers ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 1236
Author(s):  
Hsin-Yuan Chen ◽  
Yi-Fen Chiang ◽  
Jia-Syuan Huang ◽  
Tsui-Chin Huang ◽  
Yin-Hwa Shih ◽  
...  

Endometrial cancer is a common gynecological cancer with a poor prognosis, mostly attributed to tumor metastasis. Epithelial–mesenchymal transition (EMT) can be mediated via transforming growth factor beta (TGF-β) signaling pathway, facilitating the ability of cancer cell invasion and migration. Isoliquiritigenin (ISL) is a flavonoid derived from licorice with reported antineoplastic activities. This study aims to investigate the anti-metastatic potential of ISL on endometrial cancer both in vitro and in vivo. First, human endometrial cancer cell lines (HEC-1A, Ishikawa, and RL95-2) were treated with ISL and then subjected to functional assays such as migration assay as well as molecular analyses including immunoblotting, immunofluorescence and RT-qPCR. In addition, HEC-1A-LUC cells were implanted into female nude mice and treated with ISL by intraperitoneal injection for four weeks. Results showed that ISL inhibited cell migration and reversed the effect of TGF-β on the expression of E-cadherin, N-cadherin, vimentin, α-SMA, p-Smad3, and TWIST1/2 In vitro. Interestingly, In vivo study revealed that ISL reduced peritoneal dissemination and serum level of TGF-β1, as well as decreased the expression levels of N-cadherin, p-Smad2/3, TWIST1/2, while increased E-cadherin. Overall, ISL reverses the EMT through targeting the TGF-β/Smad signaling pathway and features a potential therapeutic treatment for metastatic endometrial cancer.


Sign in / Sign up

Export Citation Format

Share Document