scholarly journals Rethinking the Effects of Body Size on the Study of Brain Size Evolution

2019 ◽  
Vol 93 (4) ◽  
pp. 182-195 ◽  
Author(s):  
Enrique Font ◽  
Roberto García-Roa ◽  
Daniel Pincheira-Donoso ◽  
Pau Carazo

Body size correlates with most structural and functional components of an organism’s phenotype – brain size being a prime example of allometric scaling with animal size. Therefore, comparative studies of brain evolution in vertebrates rely on controlling for the scaling effects of body size variation on brain size variation by calculating brain weight/body weight ratios. Differences in the brain size-body size relationship between taxa are usually interpreted as differences in selection acting on the brain or its components, while selection pressures acting on body size, which are among the most prevalent in nature, are rarely acknowledged, leading to conflicting and confusing conclusions. We address these problems by comparing brain-body relationships from across >1,000 species of birds and non-avian reptiles. Relative brain size in birds is often assumed to be 10 times larger than in reptiles of similar body size. We examine how differences in the specific gravity of body tissues and in body design (e.g., presence/absence of a tail or a dense shell) between these two groups can affect estimates of relative brain size. Using phylogenetic comparative analyses, we show that the gap in relative brain size between birds and reptiles has been grossly exaggerated. Our results highlight the need to take into account differences between taxa arising from selection pressures affecting body size and design, and call into question the widespread misconception that reptile brains are small and incapable of supporting sophisticated behavior and cognition.

Author(s):  
Romain Willemet

The idea that allometry in the context of brain evolution mainly result from constraints channelling the scaling of brain components is deeply embedded in the field of comparative neurobiology. Constraints, however, only prevent or limit changes, and cannot explain why these changes happen in the first place. In fact, considering allometry as a lack of change may be one of the reasons why, after more than a century of research, there is still no satisfactory explanatory framework for the understanding of species differences in brain size and composition in mammals. The present paper attempts to tackle this issue by adopting an adaptationist approach to examine the factors behind the evolution of brain components. In particular, the model presented here aims to explain the presence of patterns of covariation among brain components found within major taxa, and the differences between taxa. The key determinant of these patterns of covariation within a taxon-cerebrotype (groups of species whose brains present a number of similarities at the physiological and anatomical levels) seems to be the presence of taxon-specific patterns of selection pressures targeting the functional and structural properties of neural components or systems. Species within a taxon share most of the selection pressures, but their levels scale with a number of factors that are often related to body size. The size and composition of neural systems respond to these selection pressures via a number of evolutionary scenarios, which are discussed here. Adaptation, rather than, as generally assumed, developmental or functional constraints, thus appears to be the main factor behind the allometric scaling of brain components. The fact that the selection pressures acting on the size of brain components form a pattern that is specific to each taxon accounts for the peculiar relationship between body size, brain size and composition, and behavioural capabilities characterizing each taxon. While it is important to avoid repeating the errors of the “Panglossian paradigm”, the elements presented here suggests that an adaptationist approach may shed a new light on the factors underlying, and the functional consequences of, species differences in brain size and composition.


2020 ◽  
Vol 95 (2) ◽  
pp. 113-122
Author(s):  
Diego Ocampo ◽  
César Sánchez ◽  
Gilbert Barrantes

The ratio of brain size to body size (relative brain size) is often used as a measure of relative investment in the brain in ecological and evolutionary studies on a wide range of animal groups. In birds, a variety of methods have been used to measure the brain size part of this ratio, including endocranial volume, fixed brain mass, and fresh brain mass. It is still unclear, however, whether these methods yield the same results. Using data obtained from fresh corpses and from published sources, this study shows that endocranial volume, mass of fixed brain tissue, and fresh mass provide equivalent estimations of brain size for 48 bird families, in 19 orders. We found, however, that the various methods yield significantly different brain size estimates for hummingbirds (Trochilidae). For hummingbirds, fixed brain mass tends to underestimate brain size due to reduced tissue density, whereas endocranial volume overestimates brain size because it includes a larger volume than that occupied by the brain.


2020 ◽  
Vol 287 (1935) ◽  
pp. 20200762
Author(s):  
Ferran Sayol ◽  
Miguel Á. Collado ◽  
Joan Garcia-Porta ◽  
Marc A. Seid ◽  
Jason Gibbs ◽  
...  

Despite their miniature brains, insects exhibit substantial variation in brain size. Although the functional significance of this variation is increasingly recognized, research on whether differences in insect brain sizes are mainly the result of constraints or selective pressures has hardly been performed. Here, we address this gap by combining prospective and retrospective phylogenetic-based analyses of brain size for a major insect group, bees (superfamily Apoidea). Using a brain dataset of 93 species from North America and Europe, we found that body size was the single best predictor of brain size in bees. However, the analyses also revealed that substantial variation in brain size remained even when adjusting for body size. We consequently asked whether such variation in relative brain size might be explained by adaptive hypotheses. We found that ecologically specialized species with single generations have larger brains—relative to their body size—than generalist or multi-generation species, but we did not find an effect of sociality on relative brain size. Phylogenetic reconstruction further supported the existence of different adaptive optima for relative brain size in lineages differing in feeding specialization and reproductive strategy. Our findings shed new light on the evolution of the insect brain, highlighting the importance of ecological pressures over social factors and suggesting that these pressures are different from those previously found to influence brain evolution in other taxa.


2019 ◽  
Author(s):  
Romain Willemet

The idea that allometry in the context of brain evolution mainly result from constraints channelling the scaling of brain components is deeply embedded in the field of comparative neurobiology. Constraints, however, only prevent or limit changes, and cannot explain why these changes happen in the first place. In fact, considering allometry as a lack of change may be one of the reasons why, after more than a century of research, there is still no satisfactory explanatory framework for the understanding of species differences in brain size and composition in mammals. The present paper attempts to tackle this issue by adopting an adaptationist approach to examine the factors behind the evolution of brain components. In particular, the model presented here aims to explain the presence of patterns of covariation among brain components found within major taxa, and the differences between taxa. The key determinant of these patterns of covariation within a taxon-cerebrotype (groups of species whose brains present a number of similarities at the physiological and anatomical levels) seems to be the presence of taxon-specific patterns of selection pressures targeting the functional and structural properties of neural components or systems. Species within a taxon share most of the selection pressures, but their levels scale with a number of factors that are often related to body size. The size and composition of neural systems respond to these selection pressures via a number of evolutionary scenarios, which are discussed here. Adaptation, rather than, as generally assumed, developmental or functional constraints, thus appears to be the main factor behind the allometric scaling of brain components. The fact that the selection pressures acting on the size of brain components form a pattern that is specific to each taxon accounts for the peculiar relationship between body size, brain size and composition, and behavioural capabilities characterizing each taxon. While it is important to avoid repeating the errors of the “Panglossian paradigm”, the elements presented here suggests that an adaptationist approach may shed a new light on the factors underlying, and the functional consequences of, species differences in brain size and composition.


2015 ◽  
Vol 282 (1810) ◽  
pp. 20151008 ◽  
Author(s):  
Kristina Noreikiene ◽  
Gábor Herczeg ◽  
Abigél Gonda ◽  
Gergely Balázs ◽  
Arild Husby ◽  
...  

The mosaic model of brain evolution postulates that different brain regions are relatively free to evolve independently from each other. Such independent evolution is possible only if genetic correlations among the different brain regions are less than unity. We estimated heritabilities, evolvabilities and genetic correlations of relative size of the brain, and its different regions in the three-spined stickleback ( Gasterosteus aculeatus ). We found that heritabilities were low (average h 2 = 0.24), suggesting a large plastic component to brain architecture. However, evolvabilities of different brain parts were moderate, suggesting the presence of additive genetic variance to sustain a response to selection in the long term. Genetic correlations among different brain regions were low (average r G = 0.40) and significantly less than unity. These results, along with those from analyses of phenotypic and genetic integration, indicate a high degree of independence between different brain regions, suggesting that responses to selection are unlikely to be severely constrained by genetic and phenotypic correlations. Hence, the results give strong support for the mosaic model of brain evolution. However, the genetic correlation between brain and body size was high ( r G = 0.89), suggesting a constraint for independent evolution of brain and body size in sticklebacks.


2017 ◽  
Vol 65 (5) ◽  
pp. 292 ◽  
Author(s):  
Bradley P. Smith ◽  
Teghan A. Lucas ◽  
Rachel M. Norris ◽  
Maciej Henneberg

Endocranial volume was measured in a large sample (n = 128) of free-ranging dingoes (Canis dingo) where body size was known. The brain/body size relationship in the dingoes was compared with populations of wild (Family Canidae) and domestic canids (Canis familiaris). Despite a great deal of variation among wild and domestic canids, the brain/body size of dingoes forms a tight cluster within the variation of domestic dogs. Like dogs, free-ranging dingoes have paedomorphic crania; however, dingoes have a larger brain and are more encephalised than most domestic breeds of dog. The dingo’s brain/body size relationship was similar to those of other mesopredators (medium-sized predators that typically prey on smaller animals), including the dhole (Cuon alpinus) and the coyote (Canis latrans). These findings have implications for the antiquity and classification of the dingo, as well as the impact of feralisation on brain size. At the same time, it highlights the difficulty in using brain/body size to distinguish wild and domestic canids.


2018 ◽  
Vol 92 (3-4) ◽  
pp. 167-181 ◽  
Author(s):  
George A. Lyras

Of all known insular mammals, hippos and elephants present the extremes of body size decrease, reducing to 4 and a mere 2% of their ancestral mainland size, respectively. Despite the numerous studies on these taxa, what happens to their relative brain size during phyletic dwarfing is not well known, and results are sometimes conflicting. For example, relative brain size increase has been noted in the Sicilian dwarf elephant, Palaeoloxodon falconeri, whereas relative brain size decrease has been postulated for Malagasy dwarf hippos. Here, I perform an analysis of brain, skull, and body size of 3 insular elephants (Palaeoloxodon “mnaidriensis,” P. tiliensis, and P. falconeri) and 3 insular hippos (Hippopotamus madagascariensis, H. lemerlei, and H. minor) to address this issue and to test whether relative brain size in phyletic dwarf species can be predicted. The results presented here show that the encephalization of all insular elephants and hippos is higher than that of their continental relatives. P. falconeri in particular has an enormous encephalization increase, which has so far not been reported in any other insular mammal. Insular brain size cannot be reliably predicted using either static allometric or ontogenetic scaling models. The results of this study indicate that insular dwarf species follow brain-body allometric relationships different from the expected patterns seen for their mainland relatives.


2008 ◽  
Vol 5 (1) ◽  
pp. 125-129 ◽  
Author(s):  
Karin Isler ◽  
Carel P Van Schaik

The expensive brain hypothesis predicts an interspecific link between relative brain size and life-history pace. Indeed, animals with relatively large brains have reduced rates of growth and reproduction. However, they also have increased total lifespan. Here we show that the reduction in production with increasing brain size is not fully compensated by the increase in lifespan. Consequently, the maximum rate of population increase ( r max ) is negatively correlated with brain mass. This result is not due to a confounding effect of body size, indicating that the well-known correlation between r max and body size is driven by brain size, at least among homeothermic vertebrates. Thus, each lineage faces a ‘grey ceiling’, i.e. a maximum viable brain size, beyond which r max is so low that the risk of local or species extinction is very high. We found that the steep decline in r max with brain size is absent in taxa with allomaternal offspring provisioning, such as cooperatively breeding mammals and most altricial birds. These taxa thus do not face a lineage-specific grey ceiling, which explains the far greater number of independent origins of large brain size in birds than mammals. We also predict that (absolute and relative) brain size is an important predictor of macroevolutionary extinction patterns.


2016 ◽  
Vol 136 (2) ◽  
pp. 193-204 ◽  
Author(s):  
Lei Shi ◽  
Enzhi Hu ◽  
Zhenbo Wang ◽  
Jiewei Liu ◽  
Jin Li ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document