Sensory Processing Sensitivity Predicts Individual Differences in Resting-State Functional Connectivity Associated with Depth of Processing

2021 ◽  
pp. 1-15
Author(s):  
Bianca P. Acevedo ◽  
Tyler Santander ◽  
Robert Marhenke ◽  
Arthur Aron ◽  
Elaine Aron

<b><i>Background:</i></b> Sensory processing sensitivity (SPS) is a biologically based temperament trait associated with enhanced awareness and responsivity to environmental and social stimuli. Individuals with high SPS are more affected by their environments, which may result in overarousal, cognitive depletion, and fatigue. <b><i>Method:</i></b> We examined individual differences in resting-state (rs) brain connectivity (using functional MRI) as a function of SPS among a group of adults (<i>M</i> age = 66.13 ± 11.44 years) immediately after they completed a social affective “empathy” task. SPS was measured with the Highly Sensitive Person (HSP) Scale and correlated with rs brain connectivity. <b><i>Results:</i></b> Results showed enhanced rs brain connectivity within the ventral attention, dorsal attention, and limbic networks as a function of greater SPS. Region of interest analyses showed increased rs brain connectivity between the hippocampus and the precuneus (implicated in episodic memory); while weaker connectivity was shown between the amygdala and the periaqueductal gray (important for anxiety), and the hippocampus and insula (implicated in habitual cognitive processing). <b><i>Conclusions:</i></b> The present study showed that SPS is associated with rs brain connectivity implicated in attentional control, consolidation of memory, physiological homeostasis, and deliberative cognition. These results support theories proposing “depth of processing” as a central feature of SPS and highlight the neural processes underlying this cardinal feature of the trait.

2021 ◽  
Author(s):  
David C Gruskin ◽  
Gaurav H Patel

When multiple individuals are exposed to the same sensory event, some are bound to have less typical experiences than others. These atypical experiences are underpinned by atypical stimulus-evoked brain activity, the extent of which is often indexed by intersubject correlation (ISC). Previous research has attributed individual differences in ISC to variation in trait-like behavioral phenotypes. Here, we extend this line of work by showing that an individual's degree and spatial distribution of ISC are closely related to their brain's intrinsic functional architecture. Using resting state and movie watching fMRI data from 176 Human Connectome Project participants, we reveal that resting state functional connectivity (RSFC) profiles can be used to predict cortex-wide ISC with considerable accuracy. Similar region-level analyses demonstrate that the amount of ISC a brain region exhibits during movie watching is associated with its connectivity to others at rest, and that the nature of these connectivity-activity relationships varies as a function of the region's role in sensory information processing. Finally, we show that an individual's unique spatial distribution of ISC, independent of its magnitude, is also related to their RSFC profile. These findings suggest that the brain's ability to process complex sensory information is tightly linked to its baseline functional organization and motivate a more comprehensive understanding of individual responses to naturalistic stimuli.


2020 ◽  
Vol 14 ◽  
Author(s):  
Yin Du ◽  
Yinan Wang ◽  
Mengxia Yu ◽  
Xue Tian ◽  
Jia Liu

Fear of punishment prompts individuals to conform. However, why some people are more inclined than others to conform despite being unaware of any obvious punishment remains unclear, which means the dispositional determinants of individual differences in conformity propensity are poorly understood. Here, we explored whether such individual differences might be explained by individuals’ stable neural markers to potential punishment. To do this, we first defined the punishment network (PN) by combining all potential brain regions involved in punishment processing. We subsequently used a voxel-based global brain connectivity (GBC) method based on resting-state functional connectivity (FC) to characterize the hubs in the PN, which reflected an ongoing readiness state (i.e., sensitivity) for potential punishment. Then, we used the within-network connectivity (WNC) of each voxel in the PN of 264 participants to explain their tendency to conform by using a conformity scale. We found that a stronger WNC in the right thalamus, left insula, postcentral gyrus, and dACC was associated with a stronger tendency to conform. Furthermore, the FC among the four hubs seemed to form a three-phase ascending pathway, contributing to conformity propensity at every phase. Thus, our results suggest that task-independent spontaneous connectivity in the PN could predispose individuals to conform.


2021 ◽  
Author(s):  
Ayako Isato ◽  
Tetsuya Suhara ◽  
Makiko Yamada

Individual differences in positive memory recollection are of interest in mental health, as positive memories can help protect people against stress and depression. However, it is unclear how individual differences in positive memory recollection are reflected in brain activity in the resting state. Here, we investigate the resting-state functional connectivity (FC) associated with interindividual variations in positive memory by employing cluster-level inferences based on randomization/permutation region of interest (ROI)-to-ROI analyses. We identified a cluster of FCs that was positively associated with positive memory performance, including the frontal operculum, central operculum, parietal operculum, Heschl's gyrus, and planum temporale. The current results suggest that positive memory is innervated by frontotemporal network connectivity, which may have implications for future investigations of vulnerability to stress and depression.


2020 ◽  
Vol 32 (6) ◽  
pp. 1130-1141
Author(s):  
Anne-Sophie Käsbauer ◽  
Paola Mengotti ◽  
Gereon R. Fink ◽  
Simone Vossel

Although multiple studies characterized the resting-state functional connectivity (rsFC) of the right temporoparietal junction (rTPJ), little is known about the link between rTPJ rsFC and cognitive functions. Given a putative involvement of rTPJ in both reorienting of attention and the updating of probabilistic beliefs, this study characterized the relationship between rsFC of rTPJ with dorsal and ventral attention systems and these two cognitive processes. Twenty-three healthy young participants performed a modified location-cueing paradigm with true and false prior information about the percentage of cue validity to assess belief updating and attentional reorienting. Resting-state fMRI was recorded before and after the task. Seed-based correlation analysis was employed, and correlations of each behavioral parameter with rsFC before the task, as well as with changes in rsFC after the task, were assessed in an ROI-based approach. Weaker rsFC between rTPJ and right intraparietal sulcus before the task was associated with relatively faster updating of the belief that the cue will be valid after false prior information. Moreover, relatively faster belief updating, as well as faster reorienting, were related to an increase in the interhemispheric rsFC between rTPJ and left TPJ after the task. These findings are in line with task-based connectivity studies on related attentional functions and extend results from stroke patients demonstrating the importance of interhemispheric parietal interactions for behavioral performance. The present results not only highlight the essential role of parietal rsFC for attentional functions but also suggest that cognitive processing during a task changes connectivity patterns in a performance-dependent manner.


2018 ◽  
Vol 30 (12) ◽  
pp. 1883-1901 ◽  
Author(s):  
Nicolò F. Bernardi ◽  
Floris T. Van Vugt ◽  
Ricardo Ruy Valle-Mena ◽  
Shahabeddin Vahdat ◽  
David J. Ostry

The relationship between neural activation during movement training and the plastic changes that survive beyond movement execution is not well understood. Here we ask whether the changes in resting-state functional connectivity observed following motor learning overlap with the brain networks that track movement error during training. Human participants learned to trace an arched trajectory using a computer mouse in an MRI scanner. Motor performance was quantified on each trial as the maximum distance from the prescribed arc. During learning, two brain networks were observed, one showing increased activations for larger movement error, comprising the cerebellum, parietal, visual, somatosensory, and cortical motor areas, and the other being more activated for movements with lower error, comprising the ventral putamen and the OFC. After learning, changes in brain connectivity at rest were found predominantly in areas that had shown increased activation for larger error during task, specifically the cerebellum and its connections with motor, visual, and somatosensory cortex. The findings indicate that, although both errors and accurate movements are important during the active stage of motor learning, the changes in brain activity observed at rest primarily reflect networks that process errors. This suggests that error-related networks are represented in the initial stages of motor memory formation.


2021 ◽  
Author(s):  
Stephanie Rosemann ◽  
Anja Gieseler ◽  
Maike Tahden ◽  
Hans Colonius ◽  
Christiane Thiel

Untreated age-related hearing loss increases audiovisual integration and impacts resting state functional brain connectivity. It is unclear whether compensation with hearing aids is able to alter audiovisual integration and resting state functional brain connectivity. We conducted a randomized controlled pilot study to investigate how the McGurk illusion, a common measure for audiovisual integration, and resting state functional brain connectivity of the auditory cortex are altered by six-month hearing aid use. Thirty-two older participants with slight-to-moderate, symmetric, age-related hearing loss were allocated to a treatment or waiting control group and measured one week before and six months after hearing aid fitting with functional magnetic resonance imaging. Our results showed that a hearing aid use of six months was associated with a decrease in resting state functional connectivity between the auditory cortex and the fusiform gyrus and that this decrease was related to an increase of perceived McGurk illusions. Our study, therefore, suggests that even short-term hearing aid use alters audiovisual integration and functional brain connectivity between auditory and visual cortices.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Stephen J. Kohut ◽  
Dionyssios Mintzopoulos ◽  
Brian D. Kangas ◽  
Hannah Shields ◽  
Kelly Brown ◽  
...  

AbstractLong-term cocaine use is associated with a variety of neural and behavioral deficits that impact daily function. This study was conducted to examine the effects of chronic cocaine self-administration on resting-state functional connectivity of the dorsal anterior cingulate (dACC) and putamen—two brain regions involved in cognitive function and motoric behavior—identified in a whole brain analysis. Six adult male squirrel monkeys self-administered cocaine (0.32 mg/kg/inj) over 140 sessions. Six additional monkeys that had not received any drug treatment for ~1.5 years served as drug-free controls. Resting-state fMRI imaging sessions at 9.4 Tesla were conducted under isoflurane anesthesia. Functional connectivity maps were derived using seed regions placed in the left dACC or putamen. Results show that cocaine maintained robust self-administration with an average total intake of 367 mg/kg (range: 299–424 mg/kg). In the cocaine group, functional connectivity between the dACC seed and regions primarily involved in motoric behavior was weaker, whereas connectivity between the dACC seed and areas implicated in reward and cognitive processing was stronger. In the putamen seed, weaker widespread connectivity was found between the putamen and other motor regions as well as with prefrontal areas that regulate higher-order executive function; stronger connectivity was found with reward-related regions. dACC connectivity was associated with total cocaine intake. These data indicate that functional connectivity between regions involved in motor, reward, and cognitive processing differed between subjects with recent histories of cocaine self-administration and controls; in dACC, connectivity appears to be related to cumulative cocaine dosage during chronic exposure.


2020 ◽  
Vol 46 (Supplement_1) ◽  
pp. S92-S92
Author(s):  
Guusje Collin ◽  
Alfonso Nieto-Castanon ◽  
Martha Shenton ◽  
Ofer Pasternak ◽  
Sinead Kelly ◽  
...  

Abstract Background Improved outcome prediction in individuals at high risk for psychosis may facilitate targeted early intervention. Studies suggest that improved outcome prediction may be achieved through the use of neurocognitive or neuroimaging data, on their own or in addition to clinical data. This study examines whether adding resting-state functional connectivity data to validated clinical predictors of psychosis improve outcome prediction in the prodromal stage. Methods This study involves 137 adolescents and young adults at Clinical High Risk (CHR) for psychosis from the Shanghai At Risk for Psychosis (SHARP) program. Based on outcome after one-year follow-up, participants were separated into three outcome categories: good outcome (symptom remission, N = 71), intermediate outcome (ongoing CHR symptoms, N = 30), and poor outcome (conversion to psychosis or treatment-refractory, N = 36). Resting-state fMRI data were acquired for each participant and processed using the Conn toolbox, including rigorous motion correction. Multinomial logistic regression analysis and leave-one-out cross-validation were used to assess the performance of three prediction models: 1) a clinical-only model using validated clinical predictors from the NAPLS-2 psychosis-risk calculator, 2) an fMRI-only model using measures of functional connectome organization and within/between-network connectivity among established resting-state networks, and 3) a combined clinical and fMRI prediction model. Model performance was assessed using the harmonic mean of the positive predictive value and sensitivity for each outcome category. This F1 measure was compared to expected chance-levels using a permutation test with 1,000 sampled permutations in order to evaluate the statistical significance of the model’s prediction. Results The clinical-only prediction model failed to achieve a significant level of outcome prediction (F1 = 0.32, F1-chance = 0.26 □ 0.06, p = .154). The fMRI-only model did predict clinical outcome to a significant degree (F1 = 0.41, F1-chance = 0.29 □ 0.06, p = .016), but the combined clinical and fMRI prediction model showed the best performance (F1 = 0.46, F1-chance = 0.29 □ 0.06, p &lt; .001). On average, positive predictive values (reflecting the probability that an outcome label predicted by the model was correct) were 39% better than chance-level and 32% better than the clinical-only model. Analyzing the contribution of individual predictor variables showed that GAF functional decline, a family history of psychosis, and performance on the Hopkins Verbal Learning Test were the most influential clinical predictors, whereas modular connectome organization, default-mode and fronto-parietal within-network connectivity, and between-network connectivity among language, salience, dorsal attention, cerebellum, and sensorimotor networks were the leading fMRI predictors. Discussion This study’s findings suggest that functional brain abnormalities reflected by alterations in resting-state functional connectivity precede and may drive subsequent changes in clinical functioning. Moreover, the findings show that markers of functional brain connectivity may be useful for improving early identification and clinical decision-making in prodromal psychosis.


2013 ◽  
Vol 51 (13) ◽  
pp. 2918-2929 ◽  
Author(s):  
Alisha L. Janssen ◽  
Aaron Boster ◽  
Beth A. Patterson ◽  
Amir Abduljalil ◽  
Ruchika Shaurya Prakash

Sign in / Sign up

Export Citation Format

Share Document