scholarly journals Atypical Hemolytic Uremic Syndrome after ChAdOx1 nCoV-19 Vaccination in a Patient with Homozygous CFHR3/CFHR1 Gene Deletion

Nephron ◽  
2021 ◽  
pp. 1-5
Author(s):  
Francisco Ferrer ◽  
Marisa Roldão ◽  
Cátia Figueiredo ◽  
Karina Lopes

Hemolytic uremic syndrome (HUS) is a thrombotic microangiopathy (TMA) affecting the kidneys. Compared with typical HUS due to an infection from shiga toxin-producing <i>Escherichia coli</i>, atypical HUS involves a genetic or acquired dysregulation of the complement alternative pathway. In the presence of a mutation in a complement gene, a second trigger is often necessary for the development of the disease. We report a case of a 54-year-old female, with a past medical history of pulmonary tuberculosis, who was admitted to the emergency service with general malaise and reduction in urine output, 5 days after vaccination with ChAdOx1 nCoV-19. Laboratory results revealed microangiopathic hemolytic anemia, thrombocytopenia, and acute kidney injury. Given the clinical picture of TMA, plasma exchange (PEX) was immediately started, along with hemodialysis. Complementary laboratory workup for TMA excluded thrombotic thrombocytopenic purpura and secondary causes. Complement study revealed normal levels of factors H, B, and I, normal activity of the alternate pathway, and absence of anti-factor H antibodies. Genetic study of complement did not show pathogenic variants in the 12 genes analyzed, but revealed a deletion in gene CFHR3/CFHR1 in homozygosity. Our patient completed 10 sessions of PEX, followed by eculizumab, with both clinical and laboratorial improvement. Actually, given the short time lapse between vaccination with ChAdOx1 nCoV-19 and the clinical manifestations, we believe that vaccine was the trigger for the presentation of aHUS in this particular case.

2017 ◽  
Vol 4 (2) ◽  
pp. 13 ◽  
Author(s):  
Rodrigo Andrés Sepúlveda ◽  
Rodrigo Tagle ◽  
Aquiles Jara

 Atypical hemolytic uremic syndrome (aHUS) is a rare but catastrophic disease. It is characterized by a triad of microangiopathic hemolytic anemia, thrombocytopenia and acute renal failure. When the aHUS is primary, the cause is due to mutations in proteins that regulate the alternative pathway of complement, such as Factor H, Factor I, Factor B, C3, Membrane Co-Factor Protein and Thrombomodulin. Usually primary aHUS is associated with other amplifiers complement factors. We present a case of aHUS in a 25-year-old female patient; she presented with malignant hypertension and severe renal failure. After a widespread study, the etiology of the aHUS was a mutation in the complement factor H, not previously described in the literature (p.Tyr1177His). After treatment with Eculizumab (C5 inhibitor monoclonal antibody), she recovered renal function with not hemodialysis requirements. 


2007 ◽  
Vol 204 (6) ◽  
pp. 1249-1256 ◽  
Author(s):  
Matthew C. Pickering ◽  
Elena Goicoechea de Jorge ◽  
Rubén Martinez-Barricarte ◽  
Sergio Recalde ◽  
Alfredo Garcia-Layana ◽  
...  

Factor H (FH) is an abundant serum glycoprotein that regulates the alternative pathway of complement-preventing uncontrolled plasma C3 activation and nonspecific damage to host tissues. Age-related macular degeneration (AMD), atypical hemolytic uremic syndrome (aHUS), and membranoproliferative glomerulonephritis type II (MPGN2) are associated with polymorphisms or mutations in the FH gene (Cfh), suggesting the existence of a genotype–phenotype relationship. Although AMD and MPGN2 share pathological similarities with the accumulation of complement-containing debris within the eye and kidney, respectively, aHUS is characterized by renal endothelial injury. This pathological distinction was reflected in our Cfh association analysis, which demonstrated that although AMD and MPGN2 share a Cfh at-risk haplotype, the haplotype for aHUS was unique. FH-deficient mice have uncontrolled plasma C3 activation and spontaneously develop MPGN2 but not aHUS. We show that these mice, transgenically expressing a mouse FH protein functionally equivalent to aHUS-associated human FH mutants, regulate C3 activation in plasma and spontaneously develop aHUS but not MPGN2. These animals represent the first model of aHUS and provide in vivo evidence that effective plasma C3 regulation and the defective control of complement activation on renal endothelium are the critical events in the molecular pathogenesis of FH-associated aHUS.


Blood ◽  
2009 ◽  
Vol 114 (13) ◽  
pp. 2837-2845 ◽  
Author(s):  
Lubka T. Roumenina ◽  
Mathieu Jablonski ◽  
Christophe Hue ◽  
Jacques Blouin ◽  
Jordan D. Dimitrov ◽  
...  

Abstract Complement is a major innate immune defense against pathogens, tightly regulated to prevent host tissue damage. Atypical hemolytic uremic syndrome (aHUS) is characterized by endothelial damage leading to renal failure and is highly associated with abnormal alternative pathway regulation. We characterized the functional consequences of 2 aHUS-associated mutations (D254G and K325N) in factor B, a key participant in the alternative C3 convertase. Mutant proteins formed high-affinity C3-binding site, leading to a hyperfunctional C3 convertase, resistant to decay by factor H. This led to enhanced complement deposition on the surface of alternative pathway activator cells. In contrast to native factor B, the 2 mutants bound to inactivated C3 and induced formation of functional C3-convertase on iC3b-coated surface. We demonstrated for the first time that factor B mutations lead to enhanced C3-fragment deposition on quiescent and adherent human glomerular cells (GEnCs) and human umbilical vein endothelial cells (HUVECs), together with the formation of sC5b-9 complexes. These results could explain the occurrence of the disease, since excessive complement deposition on endothelial cells is a central event in the pathogenesis of aHUS. Therefore, risk factors for aHUS are not only mutations leading to loss of regulation, but also mutations, resulting in hyperactive C3 convertase.


2020 ◽  
Vol 22 (3) ◽  
pp. 569-576
Author(s):  
I. A. Tuzankina ◽  
M. A. Bolkov ◽  
N. S. Zhuravleva ◽  
Yu. O. Vaseneva ◽  
Kh. Shinvari ◽  
...  

This article presents two clinical cases of patients with a homozygous deletion of segment of chromosome 1, which covers regions of genes associated with complement factor H, in particular CFHR3. Patients underwent in-depth clinical studies, heredity assessment, laboratory, instrumental and genetic diagnostics. The first clinical case describes a clinical case with deleted chromosome 1 segment in a 9-year-old girl who was diagnosed with atypical hemolytic-uremic syndrome. This is a complement-dependent disease that affects both adults and children. It is known that a defect in any proteins included in the alternative complement activation pathway can lead to atypical hemolytic-uremic syndrome. However, this syndrome is most often caused by defects in chromosome 1 region, including gene sequences associated with complement factor H – CFHR1 and CFHR3. Modern treatment of atypical hemolytic uremic syndrome involves targeted pathogenetic treatment, therefore, the genetic diagnosis seems to be a necessary step for differential diagnosis and confirmation. The patient had fairly typical clinical symptoms, including signs of thrombotic microangiopathy, thrombocytopenia, hemolytic anemia and increasing renal failure. It is also known that her mother had congenital hydronephrosis, and the pregnancy proceeded against a background of ureaplasma, mycoplasma, cytomegalovirus infection, chronic pyelonephritis, and preeclampsia.The second clinical case of a deleted chromosome 1 region, involving the CFHR3 gene, is a description of the disease in a boy of 8 years old, while the disease manifested with alopecia at the age of 4. Intermittent alopecia was the main symptom, while there were no signs of renal failure, thrombocytopenic purpura, and other symptoms characteristic of atypical hemolytic-uremic syndrome. The boy also revealed some congenital defects of the urinary system: bladder diverticulum, unilateral ureterohydronephrosis, and bilateral dilatation of the pyelocaliceal system. The detected genetic defect is usually associated with atypical hemolytic uremic syndrome. However, the phenotype, i.e., clinical manifestations, determined a completely different diagnosis – primary immunodeficiency, a group of complement defects, and a deficiency of complement factor H-related protein. After analyzing the given clinical cases, we can conclude that clinical manifestations may vary significantly in carriers of same gene mutations. This suggests that there are additional factors (genetic or environmental) that can influence the formation of various phenotypic manifestations of this pathology.


2022 ◽  
Vol 0 (0) ◽  
Author(s):  
Larisa Pinte ◽  
Bogdan Marian Sorohan ◽  
Zoltán Prohászka ◽  
Mihaela Gherghiceanu ◽  
Cristian Băicuş

Abstract The evidence regarding thrombotic microangiopathy (TMA) related to Coronavirus Infectious Disease 2019 (COVID-19) in patients with complement gene mutations as a cause of acute kidney injury (AKI) are limited. We presented a case of a 23-year-old male patient admitted with an asymptomatic form of COVID-19, but with uncontrolled hypertension and AKI. Kidney biopsy showed severe lesions of TMA. In evolution patient had persistent microangiopathic hemolytic anemia, decreased level of haptoglobin and increased LDH level. Decreased complement C3 level and the presence of schistocytes were found for the first time after biopsy. Kidney function progressively decreased and the patient remained hemodialysis dependent. Complement work-up showed a heterozygous variant with unknown significance in complement factor I (CFI) c.-13G>A, affecting the 5' UTR region of the gene. In addition, the patient was found to be heterozygous for the complement factor H (CFH) H3 haplotype (involving the rare alleles of c.-331C>T, Q672Q and E936D polymorphisms) reported as a risk factor of atypical hemolytic uremic syndrome. This case of AKI associated with severe TMA and secondary hemolytic uremic syndrome highlights the importance of genetic risk modifiers in the alternative pathway dysregulation of the complement in the setting of COVID-19, even in asymptomatic forms.


Hematology ◽  
2011 ◽  
Vol 2011 (1) ◽  
pp. 15-20 ◽  
Author(s):  
David Kavanagh ◽  
Timothy H. J. Goodship

Abstract Atypical hemolytic uremic syndrome (aHUS) is now well recognized to be a disease characterized by excessive complement activation in the microvasculature. In both the familial and sporadic forms, inherited and acquired abnormalities affecting components of the alternative complement pathway are found in ∼ 60% of patients. These include mutations in the genes encoding both complement regulators (factor H, factor I, membrane cofactor protein, and thrombomodulin) and activators (factors B and C3) and autoantibodies against factor H. Multiple hits are necessary for the disease to manifest, including a trigger, mutations, and at-risk haplotypes in complement genes. The prognosis for aHUS is poor, with most patients developing end-stage renal failure. Renal transplantation in most patients also has a poor prognosis, with frequent loss of the allograft to recurrent disease. However, improving results with combined liver-kidney transplantation and the advent of complement inhibitors such as eculizumab offer hope that the prognosis for aHUS will improve in future years.


2021 ◽  
Vol 2021 ◽  
pp. 1-8
Author(s):  
Shereen Shawky ◽  
Hesham Safouh ◽  
Mona Gamal ◽  
Mohammed M. Abbas ◽  
Azza Aboul-Enein ◽  
...  

Background. Atypical hemolytic uremic syndrome (aHUS) is an important cause of acute kidney injury in children. It is primarily caused by dysregulation of the complement alternative pathway due to genetic mutations, mainly in complement factor H genes, or due to anti-factor H autoantibodies (anti-FH), leading to uncontrolled overactivation of the complement system. Early diagnosis and treatment of autoimmune HUS (AI-HUS) is essential and leads to a favorable outcome. Methods. Fifty pediatric HUS patients and 50 age- and sex-matched controls were included in the study. Patients were subjected to full history taking, clinical examination, and laboratory testing. All candidates were subjected to an assessment of anti-FH in serum by a homemade enzyme-linked immunosorbent assay technique. Results. A high frequency of serum anti-FH was detected in our aHUS patients. The disease onset of AI-HUS was mainly observed in March and April, with significantly higher rates in school-aged males. All patients who started immunosuppressives early together with plasmapheresis upon detection of their anti-FH had complete renal function recovery. Conclusion. The high frequency of AI-HUS revealed in Egyptian HUS children in our study highlights the importance of implementing anti-FH testing in Egypt to provide early recognition for immediate proper management, including early immunosuppressive therapy, and hence improving patient outcomes.


Sign in / Sign up

Export Citation Format

Share Document