scholarly journals MRI image segmentation using machine learning networks and level set approaches

Author(s):  
Layth Kamil Adday Almajmaie ◽  
Ahmed Raad Raheem ◽  
Wisam Ali Mahmood ◽  
Saad Albawi

<span>The segmented brain tissues from magnetic resonance images (MRI) always pose substantive challenges to the clinical researcher community, especially while making precise estimation of such tissues. In the recent years, advancements in deep learning techniques, more specifically in fully convolution neural networks (FCN) have yielded path breaking results in segmenting brain tumour tissues with pin-point accuracy and precision, much to the relief of clinical physicians and researchers alike. A new hybrid deep learning architecture combining SegNet and U-Net techniques to segment brain tissue is proposed here. Here, a skip connection of the concerned U-Net network was suitably explored. The results indicated optimal multi-scale information generated from the SegNet, which was further exploited to obtain precise tissue boundaries from the brain images. Further, in order to ensure that the segmentation method performed better in conjunction with precisely delineated contours, the output is incorporated as the level set layer in the deep learning network. The proposed method primarily focused on analysing brain tumor segmentation (BraTS) 2017 and BraTS 2018, dedicated datasets dealing with MRI brain tumour. The results clearly indicate better performance in segmenting brain tumours than existing ones.</span>

2021 ◽  
Author(s):  
Asmita Dixit

Abstract With lot happening in the field of Deep Learning, classification of brain tumor is still a matter of concern. Brain tumor segmentation and classification using MRI scans has achieved lot of interest in the area of medical imaging. The emphasis still lies on developing automatic computer-aided system for early predictions and diagnosis. MRI of brain Tumors not only varies in shape but sometimes gives less contrasted details also. In this paper, we present a FastAI based Transfer Learning tumor classification in which pre-trained model with segmented features classifies tumor based on its learning. The proposed model with the technique of Deep learning applies ResNet152 as base model to extract features from the MRI brain images. With certain changes in the last 3 layers of ResNet152, 97% accuracy in Dataset-253, 96% accuracy in Dataset-205 is achieved. Models such as Resnet50, VGG16, ResNet34 and Basic CNN is also evaluated. The model improved from ResNet152 has provided improved results. The observations suggest that usage of Transfer Learning is effective when the Dataset is limited. The prepared model is effective and can be collaborated in computer-aided brain MR images Tumor classification.


2021 ◽  
Vol 4 (9(112)) ◽  
pp. 23-31
Author(s):  
Wasan M. Jwaid ◽  
Zainab Shaker Matar Al-Husseini ◽  
Ahmad H. Sabry

Brain tumors are the growth of abnormal cells or a mass in a brain. Numerous kinds of brain tumors were discovered, which need accurate and early detection techniques. Currently, most diagnosis and detection methods rely on the decision of neuro-specialists and radiologists to evaluate brain images, which may be time-consuming and cause human errors. This paper proposes a robust U-Net deep learning Convolutional Neural Network (CNN) model that can classify if the subject has a tumor or not based on Brain Magnetic resonance imaging (MRI) with acceptable accuracy for medical-grade application. The study built and trained the 3D U-Net CNN including encoding/decoding relationship architecture to perform the brain tumor segmentation because it requires fewer training images and provides more precise segmentation. The algorithm consists of three parts; the first part, the downsampling part, the bottleneck part, and the optimum part. The resultant semantic maps are inserted into the decoder fraction to obtain the full-resolution probability maps. The developed U-Net architecture has been applied on the MRI scan brain tumor segmentation dataset in MICCAI BraTS 2017. The results using Matlab-based toolbox indicate that the proposed architecture has been successfully evaluated and experienced for MRI datasets of brain tumor segmentation including 336 images as training data and 125 images for validation. This work demonstrated comparative performance and successful feasibility of implementing U-Net CNN architecture in an automated framework of brain tumor segmentations in Fluid-attenuated inversion recovery (FLAIR) MR Slices. The developed U-Net CNN model succeeded in performing the brain tumor segmentation task to classify the input brain images into a tumor or not based on the MRI dataset.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Ramin Ranjbarzadeh ◽  
Abbas Bagherian Kasgari ◽  
Saeid Jafarzadeh Ghoushchi ◽  
Shokofeh Anari ◽  
Maryam Naseri ◽  
...  

AbstractBrain tumor localization and segmentation from magnetic resonance imaging (MRI) are hard and important tasks for several applications in the field of medical analysis. As each brain imaging modality gives unique and key details related to each part of the tumor, many recent approaches used four modalities T1, T1c, T2, and FLAIR. Although many of them obtained a promising segmentation result on the BRATS 2018 dataset, they suffer from a complex structure that needs more time to train and test. So, in this paper, to obtain a flexible and effective brain tumor segmentation system, first, we propose a preprocessing approach to work only on a small part of the image rather than the whole part of the image. This method leads to a decrease in computing time and overcomes the overfitting problems in a Cascade Deep Learning model. In the second step, as we are dealing with a smaller part of brain images in each slice, a simple and efficient Cascade Convolutional Neural Network (C-ConvNet/C-CNN) is proposed. This C-CNN model mines both local and global features in two different routes. Also, to improve the brain tumor segmentation accuracy compared with the state-of-the-art models, a novel Distance-Wise Attention (DWA) mechanism is introduced. The DWA mechanism considers the effect of the center location of the tumor and the brain inside the model. Comprehensive experiments are conducted on the BRATS 2018 dataset and show that the proposed model obtains competitive results: the proposed method achieves a mean whole tumor, enhancing tumor, and tumor core dice scores of 0.9203, 0.9113 and 0.8726 respectively. Other quantitative and qualitative assessments are presented and discussed.


2020 ◽  
Vol 21 (1) ◽  
pp. 3-10
Author(s):  
E Murali ◽  
K Meena

This paper depicts a computerized framework that can distinguish brain tumor and investigate the diverse highlights of the tumor. Brain tumor segmentation means to isolated the unique tumor tissues, for example, active cells, edema and necrotic center from ordinary mind tissues of WM, GM, and CSF. However, manual segmentation in magnetic resonance data is a timeconsuming task. We present a method of automatic tumor segmentation in magnetic resonance images which consists of several steps. The recommended framework is helped by image processing based technique that gives improved precision rate of the cerebrum tumor location along with the computation of tumor measure. In this paper, the location of brain tumor from MRI isrecognized utilizing adaptive thresholding with a level set and a morphological procedure with histogram. Automatic brain tumor stage is performed by using ensemble classification. Such phase classifies brain images into tumor and non-tumors using Feed Forwarded Artificial neural network based classifier. For test investigation, continuous MRI images gathered from 200 people are utilized. The rate of fruitful discovery through the proposed procedure is 97.32 percentage accurate.


Author(s):  
Ghazanfar Latif ◽  
Jaafar Alghazo ◽  
Fadi N. Sibai ◽  
D.N.F. Awang Iskandar ◽  
Adil H. Khan

Background: Variations of image segmentation techniques, particularly those used for Brain MRI segmentation, vary in complexity from basic standard Fuzzy C-means (FCM) to more complex and enhanced FCM techniques. Objective: In this paper, a comprehensive review is presented on all thirteen variations of FCM segmentation techniques. In the review process, the concentration is on the use of FCM segmentation techniques for brain tumors. Brain tumor segmentation is a vital step in the process of automatically diagnosing brain tumors. Unlike segmentation of other types of images, brain tumor segmentation is a very challenging task due to the variations in brain anatomy. The low contrast of brain images further complicates this process. Early diagnosis of brain tumors is indeed beneficial to patients, doctors, and medical providers. Results: FCM segmentation works on images obtained from magnetic resonance imaging (MRI) scanners, requiring minor modifications to hospital operations to early diagnose tumors as most, if not all, hospitals rely on MRI machines for brain imaging. In this paper, we critically review and summarize FCM based techniques for brain MRI segmentation.


Sign in / Sign up

Export Citation Format

Share Document