scholarly journals Theoretical and experimental analysis of electromagnetic coupling into microwave circuit

Author(s):  
Ilham Zerrouk ◽  
Mohamed Amellal ◽  
Amine Amharech ◽  
Mohamed Ramdani ◽  
Hassane Kabbaj

<span lang="EN-US">In this paper, our work is devoted to a time domain analysis of field-to-line coupling model. The latter is designed with a uniform microstrip multiconductor transmission line (MTL), connected with a mixed load which can be linear as a resistance, nonlinear like a diode or complex nonlinear as a Metal Semiconductor Field-Effect Transistor (MESFET). The finite difference time-domain technique (FDTD) is used to compute the expression of voltage and current at the line. The primary advantage of this method over many existing methods is that nonlinear terminations may be readily incorporated into the algorithm and the analysis. The numerical predictions using the proposed method show a good agreement with the GHz Transverse Electro Magnetic (GTEM) measurement.</span>

2011 ◽  
Vol 130-134 ◽  
pp. 1383-1386 ◽  
Author(s):  
Fei Xie ◽  
Bing Cao ◽  
Cheng Long Liu

To study damage effectiveness of strong electro-magnetic pulse to components of equipments, the power density in area of MOS circuit, diodes and transistor of a computer is simulated, using the method of the finite-difference time-domain (FDTD). Coupling laws in different areas are achieved, and then judging the damage efficiency of components. Electromagnetic pulse reflects constantly in computer box, causing power density appears oscillations. Energy gradually declines to zero, for it radiates outward from slots. Field concentration around PCB board results in dissociation of field strength, and slows down the attenuation of energy. Finally, formula of power density at random field strength and rise time is also obtained.


Sign in / Sign up

Export Citation Format

Share Document