light extraction efficiency
Recently Published Documents


TOTAL DOCUMENTS

579
(FIVE YEARS 123)

H-INDEX

32
(FIVE YEARS 5)

Crystals ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 82
Author(s):  
Mei Ge ◽  
Yi Li ◽  
Youhua Zhu ◽  
Meiyu Wang

The light extraction behavior of an AlGaN-based deep-ultraviolet LED covered with Al nanoparticles (NPs) is investigated by three-dimensional finite-difference time-domain simulation. For the transmission spectra of s- and p-polarizations in different emission directions, the position of maximum transmittance can be changed from (θ = 0°, λ = 273 nm) to (θ = 0°, λ = 286 nm) by increasing the diameter of Al NPs from 40 nm to 80 nm. In the direction that is greater than the critical angle, the transmittance of s-polarization is very small due to the strong absorption of Al NPs, while the transmittance spectrum of p-polarization can be observed obviously for the 80 nm Al NPs structure. For a ~284 nm AlGaN-based LED with surface plasmon (SP) coupling, although the luminous efficiency is significantly improved due to the improvement of the radiation recombination rate as compared with the conventional LED, the light extraction efficiency (LEE) is lower than 2.61% of the conventional LED without considering the lateral surface extraction and bottom reflection. The LEE is not greater than ~0.98% (~2.12%) for an SP coupling LED with 40 nm (80 nm) Al NPs. The lower LEE can be attributed to the strong absorption of Al NPs.


2022 ◽  
Vol 9 ◽  
Author(s):  
Yu Bai ◽  
Yahui Chuai ◽  
Yang Wang ◽  
Yingzhi Wang

Photons trapped in the form of waveguide (WG) modes associated with the organic–organic interface and in the form of surface plasmon polariton (SPP) modes associated with the metallic electrode–organic interface result in a large energy loss in organic light-emitting devices (OLEDs). Introducing gratings onto the metallic electrode is especially crucial for recovering the power lost to the associated SPP modes. In our research, we demonstrate the efficient outcoupling of SPP modes in TE mode by two-dimensional (2D) grating, which cannot excited in one-dimensional (1D) grating OLED. This causes a 62.5% increase in efficiency from 2D grating OLED than 1D grating OLED. The efficient outcoupling of the WG and SPP modes is verified by the numerical simulation of both the emission spectra and the field distribution.


2021 ◽  
Vol 119 (23) ◽  
pp. 233302
Author(s):  
Shukun Weng ◽  
Min Sun ◽  
Liping Zhang ◽  
Lubing Jiang ◽  
Chao Shi ◽  
...  

2021 ◽  
Vol 9 ◽  
Author(s):  
Peng Bai ◽  
Yueheng Zhang ◽  
Wenzhong Shen ◽  
Ning Yang ◽  
Weidong Chu

High-performance terahertz (THz) imaging devices have drawn wide attention due to their significant application in a variety of application fields. Recently, the upconversion device based on the integrated homo-junction interfacial workfunction internal photoemission detector and light-emitting diode (HIWIP-LED) has emerged as a promising candidate for broadband THz upconversion pixelless imaging device. In this paper, systematical investigations on the cryogenic-temperature performances of the LED part in HIWIP-LED devices, including electroluminescence (EL) spectra and the EL efficiency, have been carried out by elaborating the radiative recombination mechanism in the quantum well, internal quantum efficiency, and the light extraction efficiency (LEE) both experimentally and theoretically. On this basis, we have further studied the operation mode of the HIWIP-LED and concluded that the LEE could directly determine the upconversion efficiency. A numerical simulation has been performed to optimize the LEE. Numerical results show that the device with a micro-lens geometry structure could significantly improve the LEE of the LED thereby increasing the upconversion efficiency. An optimal upconversion efficiency value of 0.12 W/W and a minimum noise equivalent power (NEP) of 14 pW/Hz1/2 are achieved using the micro-lens structure together with anti-reflection coating. This work gives a precise description of cryogenic LED performance in the HIWIP-LED device and provides an optimization method for the broadband HIWIP-LED THz upconversion pixelless imaging device.


Nanophotonics ◽  
2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Sanmun Kim ◽  
Jeong Min Shin ◽  
Jaeho Lee ◽  
Chanhyung Park ◽  
Songju Lee ◽  
...  

Abstract The optical properties of thin-film light emitting diodes (LEDs) are strongly dependent on their structures due to light interference inside the devices. However, the complexity of the design space grows exponentially with the number of design parameters, making it challenging to optimize the optical properties of multilayer LEDs with rigorous electromagnetic simulations. In this work, we demonstrate an artificial neural network that can predict the light extraction efficiency of an organic LED structure in 30 ms, which is ∼103 times faster than the rigorous simulation in a single-treaded execution with root-mean-squared error of 1.86 × 10−3. The effective inference time per structure is brought down to ∼0.6 μs with unaltered error rate with parallelization. We also show that our neural networks can efficiently solve the inverse problem – finding a device design that exhibits the desired light extraction spectrum – within the similar time scale. We investigate the one-to-many mapping issue of the inverse problem and find that the degeneracy can be lifted by incorporating additional emission spectra at different observing angles. Furthermore, the forward neural network is combined with a conventional genetic algorithm to address additional large-scale optimization problems including maximization of light extraction efficiency and minimization of angle dependent color shift. Our approach establishes a platform for tackling computation-heavy optimization tasks with one-time computational cost.


2021 ◽  
Vol 2116 (1) ◽  
pp. 012121
Author(s):  
Mohammad Azarifar ◽  
Ceren Cengiz ◽  
Mehmet Arik

Abstract Optical and thermal control are two main factors in package design process of lighting products, specifically light emitting diodes (LEDs). This research is aimed to study the role of secondary optics in opto-thermal characterization of LED packages. Novel thin total internal reflection (TIR) multifaceted reflector (MR) lens is modelled and optimized in Monte-Carlo ray-tracing simulations for MR16 package, regarded as one of the widely used LED lighting products. With criteria of designing an optical lens with 50% reduced thickness in comparison to commercially available lenses utilized in MR16 packages, nearly same light extraction efficiency and more uniform beam angles are achieved. Optical performance of the new lens is compared with the experimental results of the MR16 lamp with conventional lens. Only 2.3% reduction in maximum light intensity is obtained while lens size reduction was more than 25%. Based on the detailed CAD design, heat transfer simulations are performed comparing the lens thickness effect on heat dissipation of MR16 lamp. It was observed that using thinner lenses can reduce the lens and chip temperature, which can result in improved light quality and lifetime of both lens and light source.


2021 ◽  
Vol 143 ◽  
pp. 107360
Author(s):  
Zhihua Zheng ◽  
Qian Chen ◽  
Jiangnan Dai ◽  
Ange Wang ◽  
Renli Liang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document