scholarly journals Comparison between butterfly optimization algorithm and particle swarm optimization for tuning cascade PID control system of PMDC motor

Author(s):  
Kareem G. Abdulhussein ◽  
Naseer M. Yasin ◽  
Ihsan J. Hasan

In this paper, two optimization methods are used to adjust the gain values for the cascade PID controller. These algorithms are the butterfly optimization algorithm (BOA), which is a modern method based on tracking the movement of butterflies to the scent of a fragrance to reach the best position and the second method is particle swarm optimization (PSO). The PID controllers in this system are used to control the position, velocity, and current of a permanent magnet DC motor (PMDC) with an accurate tracking trajectory to reach the desired position. The simulation results using the Matlab environment showed that the butterfly optimization algorithm is better than the particle swarming optimization (PSO) in terms of performance and overshoot or any deviation in tracking the path to reach the desired position. While an overshoot of 2.557% was observed when using the PSO algorithm, and a position deviation of 7.82 degrees was observed from the reference position.

2021 ◽  
Vol 11 (2) ◽  
pp. 839
Author(s):  
Shaofei Sun ◽  
Hongxin Zhang ◽  
Xiaotong Cui ◽  
Liang Dong ◽  
Muhammad Saad Khan ◽  
...  

This paper focuses on electromagnetic information security in communication systems. Classical correlation electromagnetic analysis (CEMA) is known as a powerful way to recover the cryptographic algorithm’s key. In the classical method, only one byte of the key is used while the other bytes are considered as noise, which not only reduces the efficiency but also is a waste of information. In order to take full advantage of useful information, multiple bytes of the key are used. We transform the key into a multidimensional form, and each byte of the key is considered as a dimension. The problem of the right key searching is transformed into the problem of optimizing correlation coefficients of key candidates. The particle swarm optimization (PSO) algorithm is particularly more suited to solve the optimization problems with high dimension and complex structure. In this paper, we applied the PSO algorithm into CEMA to solve multidimensional problems, and we also add a mutation operator to the optimization algorithm to improve the result. Here, we have proposed a multibyte correlation electromagnetic analysis based on particle swarm optimization. We verified our method on a universal test board that is designed for research and development on hardware security. We implemented the Advanced Encryption Standard (AES) cryptographic algorithm on the test board. Experimental results have shown that our method outperforms the classical method; it achieves approximately 13.72% improvement for the corresponding case.


2012 ◽  
Vol 182-183 ◽  
pp. 1953-1957
Author(s):  
Zhao Xia Wu ◽  
Shu Qiang Chen ◽  
Jun Wei Wang ◽  
Li Fu Wang

When the parameters were measured by using fiber Bragg grating (FBG) in practice, there were some parameters hard to measure, which would influenced the reflective spectral of FBG severely, and make the characteristic information harder to be extracted. Therefore, particle swarm optimization algorithm was proposed in analyzing the uniform force reflective spectral of FBG. Based on the uniform force sense theory of FBG and particle swarm optimization algorithm, the objective function were established, meanwhile the experiment and simulation were constructed. And the characteristic information in reflective spectrum of FBG was extracted. By using particle swarm optimization algorithm, experimental data showed that particle swarm optimization algorithm used in extracting the characteristic information not only was efficaciously and easily, but also had some advantages, such as high accuracy, stability and fast convergence rate. And it was useful in high precision measurement of FBG sensor.


Complexity ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-18
Author(s):  
Feng Qian ◽  
Mohammad Reza Mahmoudi ◽  
Hamïd Parvïn ◽  
Kim-Hung Pho ◽  
Bui Anh Tuan

Conventional optimization methods are not efficient enough to solve many of the naturally complicated optimization problems. Thus, inspired by nature, metaheuristic algorithms can be utilized as a new kind of problem solvers in solution to these types of optimization problems. In this paper, an optimization algorithm is proposed which is capable of finding the expected quality of different locations and also tuning its exploration-exploitation dilemma to the location of an individual. A novel particle swarm optimization algorithm is presented which implements the conditioning learning behavior so that the particles are led to perform a natural conditioning behavior on an unconditioned motive. In the problem space, particles are classified into several categories so that if a particle lies within a low diversity category, it would have a tendency to move towards its best personal experience. But, if the particle’s category is with high diversity, it would have the tendency to move towards the global optimum of that category. The idea of the birds’ sensitivity to its flying space is also utilized to increase the particles’ speed in undesired spaces in order to leave those spaces as soon as possible. However, in desirable spaces, the particles’ velocity is reduced to provide a situation in which the particles have more time to explore their environment. In the proposed algorithm, the birds’ instinctive behavior is implemented to construct an initial population randomly or chaotically. Experiments provided to compare the proposed algorithm with the state-of-the-art methods show that our optimization algorithm is one of the most efficient and appropriate ones to solve the static optimization problems.


2020 ◽  
Vol 2020 ◽  
pp. 1-8
Author(s):  
Xiaofeng Lv ◽  
Deyun Zhou ◽  
Ling Ma ◽  
Yuyuan Zhang ◽  
Yongchuan Tang

The fault rate in equipment increases significantly along with the service life of the equipment, especially for multiple fault. Typically, the Bayesian theory is used to construct the model of faults, and intelligent algorithm is used to solve the model. Lagrangian relaxation algorithm can be adopted to solve multiple fault diagnosis models. But the mathematical derivation process may be complex, while the updating method for Lagrangian multiplier is limited and it may fall into a local optimal solution. The particle swarm optimization (PSO) algorithm is a global search algorithm. In this paper, an improved Lagrange-particle swarm optimization algorithm is proposed. The updating of the Lagrangian multipliers is with the PSO algorithm for global searching. The difference between the upper and lower bounds is proposed to construct the fitness function of PSO. The multiple fault diagnosis model can be solved by the improved Lagrange-particle swarm optimization algorithm. Experiment on a case study of sensor data-based multiple fault diagnosis verifies the effectiveness and robustness of the proposed method.


2013 ◽  
Vol 427-429 ◽  
pp. 1710-1713
Author(s):  
Xiang Tian ◽  
Yue Lin Gao

This paper introduces the principles and characteristics of Particle Swarm Optimization algorithm, and aims at the shortcoming of PSO algorithm, which is easily plunging into the local minimum, then we proposes a new improved adaptive hybrid particle swarm optimization algorithm. It adopts dynamically changing inertia weight and variable learning factors, which is based on the mechanism of natural selection. The numerical results of classical functions illustrate that this hybrid algorithm improves global searching ability and the success rate.


2016 ◽  
Vol 62 (2) ◽  
pp. 179-186 ◽  
Author(s):  
V. Leela Rani ◽  
M. Madhavi Latha

Abstract Leakage power is the dominant source of power dissipation in nanometer technology. As per the International Technology Roadmap for Semiconductors (ITRS) static power dominates dynamic power with the advancement in technology. One of the well-known techniques used for leakage reduction is Input Vector Control (IVC). Due to stacking effect in IVC, it gives less leakage for the Minimum Leakage Vector (MLV) applied at inputs of test circuit. This paper introduces Particle Swarm Optimization (PSO) algorithm to the field of VLSI to find minimum leakage vector. Another optimization algorithm called Genetic algorithm (GA) is also implemented to search MLV and compared with PSO in terms of number of iterations. The proposed approach is validated by simulating few test circuits. Both GA and PSO algorithms are implemented in Verilog HDL and the simulations are carried out using Xilinx 9.2i. From the simulation results it is found that PSO based approach is best in finding MLV compared to Genetic based implementation as PSO technique uses less runtime compared to GA. To the best of the author’s knowledge PSO algorithm is used in IVC technique to optimize power for the first time and it is quite successful in searching MLV.


Author(s):  
Satish Gajawada ◽  
Hassan M. H. Mustafa

Artificial Intelligence and Deep Learning are good fields of research. Recently, the brother of Artificial Intelligence titled "Artificial Satisfaction" was introduced in literature [10]. In this article, we coin the term “Deep Loving”. After the publication of this article, "Deep Loving" will be considered as the friend of Deep Learning. Proposing a new field is different from proposing a new algorithm. In this paper, we strongly focus on defining and introducing "Deep Loving Field" to Research Scientists across the globe. The future of the "Deep Loving" field is predicted by showing few future opportunities in this new field. The definition of Deep Learning is shown followed by a literature review of the "Deep Loving" field. The World's First Deep Loving Algorithm (WFDLA) is designed and implemented in this work by adding Deep Loving concepts to Particle Swarm Optimization Algorithm. Results obtained by WFDLA are compared with the PSO algorithm.


2019 ◽  
Vol 15 (2) ◽  
pp. 89-100
Author(s):  
Baqir Abdul-Samed ◽  
Ammar Aldair

PID controller is the most popular controller in many applications because of many advantages such as its high efficiency, low cost, and simple structure. But the main challenge is how the user can find the optimal values for its parameters. There are many intelligent methods are proposed to find the optimal values for the PID parameters, like neural networks, genetic algorithm, Ant colony and so on. In this work, the PID controllers are used in three different layers for generating suitable control signals for controlling the position of the UAV (x,y and z), the orientation of UAV (θ, Ø and ψ) and for the motors of the quadrotor to make it more stable and efficient for doing its mission. The particle swarm optimization (PSO) algorithm is proposed in this work. The PSO algorithm is applied to tune the parameters of proposed PID controllers for the three layers to optimize the performances of the controlled system with and without existences of disturbance to show how the designed controller will be robust. The proposed controllers are used to control UAV, and the MATLAB 2018b is used to simulate the controlled system. The simulation results show that, the proposed controllers structure for the quadrotor improve the performance of the UAV and enhance its stability.


2012 ◽  
Vol 532-533 ◽  
pp. 1664-1669 ◽  
Author(s):  
Jun Li Zhang ◽  
Da Wei Dai

For the purpose of overcoming the premature property and low execution efficiency of the Particle Swarm Optimization (PSO) algorithm, this paper presents a particle swarm optimization algorithm based on the pattern search. In this algorithm, personal and global optimum particles are chosen in every iteration by a probability. Then, local optimization will be performed by the pattern search and then the original individuals will be replaced. The strong local search function of the pattern search provides an effective mechanism for the PSO algorithm to escape from the local optimum, which avoids prematurity of the algorithm. Simulation shows that this algorithm features a stronger function of global search than conventional PSO, so that the optimization process can be improved remarkably.


Sign in / Sign up

Export Citation Format

Share Document