pso algorithm
Recently Published Documents


TOTAL DOCUMENTS

3146
(FIVE YEARS 1062)

H-INDEX

46
(FIVE YEARS 11)

2022 ◽  
Vol 205 ◽  
pp. 107728
Author(s):  
Navid Fahimi ◽  
Hamid Reza Sezavar ◽  
Amir Abbas Shayegani Akmal

Author(s):  
Kareem Ghazi Abdulhussein ◽  
Naseer Majeed Yasin ◽  
Ihsan Jabbar Hasan

In this paper, there are two contributions: The first contribution is to design a robust cascade P-PI controller to control the speed and position of the permanent magnet DC motor (PMDC). The second contribution is to use three methods to tuning the parameter values for this cascade controller by making a comparison between them to obtain the best results to ensure accurate tracking trajectory on the axis to reach the desired position. These methods are the classical method (CM) and it requires some assumptions, the genetic algorithm (GA), and the particle swarm optimization algorithm (PSO). The simulation results show the system becomes unstable after applying the load when using the classical method because it assumes cancellation of the load effect. Also, an overshoot of about 3.763% is observed, and a deviation from the desired position of about 12.03 degrees is observed when using the GA algorithm, while no deviation or overshoot is observed when using the PSO algorithm. Therefore, the PSO algorithm has superiority as compared to the other two methods in improving the performance of the PMDC motor by extracting the best parameters for the cascade P-PI controller to reach the desired position at a regular speed.


Electronics ◽  
2022 ◽  
Vol 11 (2) ◽  
pp. 216
Author(s):  
Fei Tan ◽  
Jin Xu

The measurement of thermodynamic properties of chemical or biological reactions were often confined to experimental means, which produced overall measurements of properties being investigated, but were usually susceptible to pitfalls of being too general. Among the thermodynamic properties that are of interest, reaction rates hold the greatest significance, as they play a critical role in reaction processes where speed is of essence, especially when fast association may enhance binding affinity of reaction molecules. Association reactions with high affinities often involve the formation of a intermediate state, which can be demonstrated by a hyperbolic reaction curve, but whose low abundance in reaction mixture often preclude the possibility of experimental measurement. Therefore, we resorted to computational methods using predefined reaction models that model the intermediate state as the reaction progresses. Here, we present a novel method called AKPE (ANN-Dependent Kinetic Parameter Extraction), our goal is to investigate the association/dissociation rate constants and the concentration dynamics of lowly-populated states (intermediate states) in the reaction landscape. To reach our goal, we simulated the chemical or biological reactions as system of differential equations, employed artificial neural networks (ANN) to model experimentally measured data, and utilized Particle Swarm Optimization (PSO) algorithm to obtain the globally optimum parameters in both the simulation and data fitting. In the Results section, we have successfully modeled a protein association reaction using AKPE, obtained the kinetic rate constants of the reaction, and constructed a full concentration versus reaction time curve of the intermediate state during the reaction. Furthermore, judging from the various validation methods that the method proposed in this paper has strong robustness and accuracy.


Author(s):  
Yu-Lin Gong ◽  
Ming-Jia Hu ◽  
Hui-Fang Yang ◽  
Bo Han

Abstract ReliefF algorithm was used to analyze the weight of each water quality evaluation factor, and then based on the Relevance Vector Machine (RVM), Particle Swarm Optimization (PSO) was used to optimize the kernel width factor and hyperparameters of RVM to build a water quality evaluation model, and the experimental results of RVM, PSO-RVM, ReliefF-RVM and PSO-ReliefF-RVM were compared. The results show that ReliefF algorithm, combined with threshold value, selects 5 evaluation factors with significant weight from 8 evaluation factors, which reduces the amount of data used in the model, CSI index is used to calculate the separability of each evaluation factor combination. The results show that the overall separability of the combination is best when the evaluation factor with significant weight is reserved. When different water quality evaluation factors were included, the evaluation accuracy of PSO-ReliefF-RVM model reached 95.74%, 14.23% higher than that of RVM model, which verified the effectiveness of PSO algorithm and ReliefF algorithm, and had a higher guiding significance for the study of water quality grade evaluation. It has good practical application value.


Author(s):  
Xiling Yang

Aiming at the phenomenon of “wrong words” and “missing words” in the process of Chinese English legal interpretation, a Chinese English legal simultaneous interpretation system based on PSO algorithm is designed. According to the construction requirements of fuzzy neural network, the optimization results of PSO inertia weight are determined, and then the system model optimization based on PSO algorithm is realized with the help of membership function. On this basis, this paper analyzes the key trigger factors of simultaneous interpretation, and distinguishes the specific differences between consecutive interpretation load and simultaneous interpretation by defining the way of legal Chinese English text transmission effect, so as to realize the smooth application of legal Chinese English simultaneous interpretation system based on PSO algorithm. The results shows that, compared with the consecutive interpretation system, the simultaneous interpretation system can effectively solve all the problems of “wrong words” and “missing words” in the process of legal Chinese English document translation, and effectively guarantee the authenticity of document samples.


2022 ◽  
Vol 2022 ◽  
pp. 1-11
Author(s):  
Zhao-yang Li ◽  
Yue-hong Dai ◽  
Jun-yao Wang ◽  
Peng Tang

To eliminate the influence of spacesuits’ joint resistant torque on the operation of astronauts, an active spacesuit scheme based on the joint-assisted exoskeleton technology is proposed. Firstly, we develop a prototype of the upper limb exoskeleton robot and theoretically analyse the prototype to match astronauts’ motion behavior. Then, the Jiles-Atherton model is adopted to describe the hysteretic characteristic of joint resistant torque. Considering the parameter identification effects in the Jiles-Atherton model and the local optimum problem of the basic PSO (particle swarm optimization) algorithm, a SA- (simulated annealing-) PSO algorithm is proposed to identify the Jiles-Atherton model parameters. Compared with the modified PSO algorithm, the convergence rate of the designed SA-PSO algorithm is advanced by 6.25% and 20.29%, and the fitting accuracy is improved by 14.45% and 46.5% for upper limb joint model. Simulation results show that the identified J-A model can show good agreements with the measured experimental data and well predict the unknown joint resistance torque.


Mathematics ◽  
2022 ◽  
Vol 10 (1) ◽  
pp. 162
Author(s):  
Shengli Yang ◽  
Junjie Wang ◽  
Ming Li ◽  
Hao Yue

The optimization of an integrated coal gangue system of mining, dressing, and backfilling in deep underground mining is a multi-objective and complex decision-making process, and the factors such as spatial layout, node location, and transportation equipment need to be considered comprehensively. In order to realize the intellectualized location of the nodes for the logistics and transportation system of underground mining and dressing coal and gangue, this paper establishes the model of the logistics and transportation system of underground mining and dressing coal gangue, and analyzes the key factors of the intellectualized location for the logistics and transportation system of coal and gangue, and the objective function of the node transportation model is deduced. The PSO–QNMs algorithm is proposed for the solution of the objective function, which improves the accuracy and stability of the location selection and effectively avoids the shortcomings of the PSO algorithm with its poor local detailed search ability and the quasi-Newton algorithm with its sensitivity to the initial value. Comparison of the particle swarm and PSO–QNMs algorithm outputs for the specific conditions of the New Julong coal mine, as an example, shows that the PSO–QNMs algorithm reduces the complexity of the calculation, increases the calculation efficiency by eight times, saves 42.8% of the cost value, and improves the efficiency of the node selection of mining–dressing–backfilling systems in a complex underground mining environment. The results confirm that the method has high convergence speed and solution accuracy, and provides a fundamental basis for optimizing the underground coal mine logistics system. Based on the research results, a node siting system for an integrated underground mining, dressing, and backfilling system in coal mines (referred to as MSBPS) was developed.


Sign in / Sign up

Export Citation Format

Share Document