scholarly journals Critical Role of Platelet P-Selectin in the Response to Arterial Injury in Apolipoprotein-E–Deficient Mice

2004 ◽  
Vol 24 (6) ◽  
pp. 1124-1129 ◽  
Author(s):  
David Manka ◽  
S. Bradley Forlow ◽  
John M. Sanders ◽  
Debra Hurwitz ◽  
Daniel K. Bennett ◽  
...  
Circulation ◽  
2004 ◽  
Vol 110 (14) ◽  
pp. 2024-2031 ◽  
Author(s):  
Yuqing Huo ◽  
Lei Zhao ◽  
Matthew Craig Hyman ◽  
Pavel Shashkin ◽  
Brian L. Harry ◽  
...  

2012 ◽  
Vol 425 (2) ◽  
pp. 162-168 ◽  
Author(s):  
Fumitake Usui ◽  
Koumei Shirasuna ◽  
Hiroaki Kimura ◽  
Kazuki Tatsumi ◽  
Akira Kawashima ◽  
...  

Blood ◽  
2009 ◽  
Vol 113 (3) ◽  
pp. 705-713 ◽  
Author(s):  
Li Wang ◽  
Christine Miller ◽  
Robert F. Swarthout ◽  
Mohan Rao ◽  
Nigel Mackman ◽  
...  

Abstract Tissue factor (TF) initiates coagulation, regulates hemostasis, and plays a critical role in mediating arterial thrombosis. TF is up-regulated in vascular smooth muscle cells (VSMCs) in atherosclerosis and arterial injury. To examine the biologic role of VSMC-derived TF, we crossed TFflox/flox mice with SM22αCre+/− mice. TF mRNA and activity were decreased in the aortic media of TF-deficient mice by 96% and 94.8%, respectively. There were no differences in TF activity measured in plasma or concentrated microparticles. TF-deficient mice were generated with the expected frequency, showed no evidence of bleeding or increased mortality, and had similar activated partial thromboplastin and tail vein bleeding times. Thrombus-mediated flow reduction in response to ferric chloride injury of the carotid arteries was significantly attenuated in VSMC-specific TF-deficient. Stable occlusion was seen in 11 of 12 wild-type mice, but in only 6 of 16 VSMC-specific TF-deficient mice (P = .001). These data suggest that VSMC-derived TF is critical in a macrovascular model of arterial thrombosis. This mouse model should be valuable in determining the contribution of VSMC-derived TF in other TF-mediated phenomena, such as restenosis.


2021 ◽  
Vol 52 (1) ◽  
Author(s):  
Zhen-Zhen Liu ◽  
Yong-Jun Yang ◽  
Feng-Hua Zhou ◽  
Ke Ma ◽  
Xiao-Qi Lin ◽  
...  

AbstractGasdermin D (GSDMD), a member of the gasdermin protein family, is a caspase substrate, and its cleavage is required for pyroptosis and IL-1β secretion. To date, the role and regulatory mechanism of GSDMD during cutaneous microbial infection remain unclear. Here, we showed that GSDMD protected against Staphylococcus aureus skin infection by suppressing Cxcl1–Cxcr2 signalling. GSDMD deficiency resulted in larger abscesses, more bacterial colonization, exacerbated skin damage, and increased inflammatory cell infiltration. Although GSDMD deficiency resulted in defective IL-1β production, the critical role of IL-1β was counteracted by the fact that Caspase-1/11 deficiency also resulted in less IL-1β production but did not aggravate disease severity during S. aureus skin infection. Interestingly, GSDMD-deficient mice had increased Cxcl1 secretion accompanied by increased recruitment of neutrophils, whereas Caspase-1/11-deficient mice presented similar levels of Cxcl1 and neutrophils as wild-type mice. Moreover, the absence of GSDMD promoted Cxcl1 secretion in bone marrow-derived macrophages induced by live, dead, or different strains of S. aureus. Corresponding to higher transcription and secretion of Cxcl1, enhanced NF-κB activation was shown in vitro and in vivo in the absence of GSDMD. Importantly, inhibiting the Cxcl1–Cxcr2 axis with a Cxcr2 inhibitor or anti-Cxcl1 blocking antibody rescued host defence defects in the GSDMD-deficient mice. Hence, these results revealed an important role of GSDMD in suppressing the Cxcl1–Cxcr2 axis to facilitate pathogen control and prevent tissue damage during cutaneous S. aureus infection.


2006 ◽  
Vol 203 (7) ◽  
pp. 1795-1803 ◽  
Author(s):  
Himanshu Kumar ◽  
Taro Kawai ◽  
Hiroki Kato ◽  
Shintaro Sato ◽  
Ken Takahashi ◽  
...  

IFN-β promoter stimulator (IPS)-1 was recently identified as an adapter for retinoic acid–inducible gene I (RIG-I) and melanoma differentiation-associated gene 5 (Mda5), which recognize distinct RNA viruses. Here we show the critical role of IPS-1 in antiviral responses in vivo. IPS-1–deficient mice showed severe defects in both RIG-I– and Mda5-mediated induction of type I interferon and inflammatory cytokines and were susceptible to RNA virus infection. RNA virus–induced interferon regulatory factor-3 and nuclear factor κB activation was also impaired in IPS-1–deficient cells. IPS-1, however, was not essential for the responses to either DNA virus or double-stranded B-DNA. Thus, IPS-1 is the sole adapter in both RIG-I and Mda5 signaling that mediates effective responses against a variety of RNA viruses.


2014 ◽  
Vol 307 (3) ◽  
pp. H337-H345 ◽  
Author(s):  
Lara Gotha ◽  
Sang Yup Lim ◽  
Azriel B. Osherov ◽  
Rafael Wolff ◽  
Beiping Qiang ◽  
...  

Perlecan is a proteoglycan composed of a 470-kDa core protein linked to three heparan sulfate (HS) glycosaminoglycan chains. The intact proteoglycan inhibits the smooth muscle cell (SMC) response to vascular injury. Hspg2Δ3/Δ3 (MΔ3/Δ3) mice produce a mutant perlecan lacking the HS side chains. The objective of this study was to determine differences between these two types of perlecan in modifying SMC activities to the arterial injury response, in order to define the specific role of the HS side chains. In vitro proliferative and migratory activities were compared in SMC isolated from MΔ3/Δ3 and wild-type mice. Proliferation of MΔ3/Δ3 SMC was 1.5× greater than in wild type ( P < 0.001), increased by addition of growth factors, and showed a 42% greater migratory response than wild-type cells to PDGF-BB ( P < 0.001). In MΔ3/Δ3 SMC adhesion to fibronectin, and collagen types I and IV was significantly greater than wild type. Addition of DRL-12582, an inducer of perlecan expression, decreased proliferation and migratory response to PDGF-BB stimulation in wild-type SMC compared with MΔ3/Δ3. In an in vivo carotid artery wire injury model, the medial thickness, medial area/lumen ratio, and macrophage infiltration were significantly increased in the MΔ3/Δ3 mice, indicating a prominent role of the HS side chain in limiting vascular injury response. Mutant perlecan that lacks HS side chains had a marked reduction in the inhibition of in vitro SMC function and the in vivo arterial response to injury, indicating the critical role of HS side chains in perlecan function in the vessel wall.


2003 ◽  
Vol 197 (10) ◽  
pp. 1297-1302 ◽  
Author(s):  
Martin Hegen ◽  
Linhong Sun ◽  
Naonori Uozumi ◽  
Kazuhiko Kume ◽  
Mary E. Goad ◽  
...  

Pathogenic mechanisms relevant to rheumatoid arthritis occur in the mouse model of collagen-induced arthritis (CIA). Cytosolic phospholipase A2α (cPLA2α) releases arachidonic acid from cell membranes to initiate the production of prostaglandins and leukotrienes. These inflammatory mediators have been implicated in the development of CIA. To test the hypothesis that cPLA2α plays a key role in the development of CIA, we backcrossed cPLA2α-deficient mice on the DBA/1LacJ background that is susceptible to CIA. The disease severity scores and the incidence of disease were markedly reduced in cPLA2α-deficient mice compared with wild-type littermates. At completion of the study, &gt;90% of the wild-type mice had developed disease whereas none of the cPLA2α-deficient mice had more than one digit inflamed. Furthermore, visual disease scores correlated with severity of disease determined histologically. Pannus formation, articular fibrillation, and ankylosis were all dramatically reduced in the cPLA2α-deficient mice. Although the disease scores differed significantly between cPLA2α mutant and wild-type mice, anti-collagen antibody levels were similar in the wild-type mice and mutant littermates. These data demonstrate the critical role of cPLA2α in the pathogenesis of CIA.


2004 ◽  
Vol 24 (8) ◽  
pp. 1460-1465 ◽  
Author(s):  
Hilke Wientgen ◽  
Fayanne E. Thorngate ◽  
Sabina Omerhodzic ◽  
Linda Rolnitzky ◽  
John T. Fallon ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document