Abstract 3560: Use of Hyperpolarized Magnetic Resonance for Non-Invasive Observation of Metabolic Regulation

Circulation ◽  
2008 ◽  
Vol 118 (suppl_18) ◽  
Author(s):  
Marie A Schroeder ◽  
Lisa C Heather ◽  
Helen J Atherton ◽  
Kieran Clarke ◽  
George K Radda ◽  
...  

Hyperpolarized magnetic resonance (HP MR) has enabled real time visualization of in vivo metabolism. In this study, we postulated that HP MR could also non-invasively provide a measure of metabolic regulation. We focused on regulation of pyruvate dehydrogenase (PDH), a highly controlled enzyme that catalyzes the oxidation of pyruvate to acetyl CoA and CO2/HCO3-. We compared PDH flux in conditions of normal and attenuated enzyme activity, and in the presence of normal and augmented Krebs cycle flux, to determine the contributions of PDH activity and end product inhibition to enzyme regulation. Six rats were examined in the fed and fasted states (to modulate PDH activity), with 40 μmol HP 13C1-pyruvate alone and 40 μmol HP pyruvate co-infused with 40 μmol malate (to manipulate Krebs cycle flux/acetyl CoA uptake). HP tracer was infused into the rats in an MR scanner and cardiac spectra were acquired every second for 1 min. Conversion of pyruvate to 13HCO3-was monitored and the 13HCO3-/pyruvate ratio was used as a marker of PDH flux. Infusion of malate increased PDH flux by 31% compared with pyruvate alone, indicating that removal of acetyl CoA by incorporation into the Krebs cycle increased PDH flux. PDH flux was 57% lower in fasted rats injected with pyruvate alone compared with fed rats, and did not change with malate co-infusion. Here, low PDH activity prevented additional enzyme flux. These results suggest that end product inhibition limits fed state PDH flux, whereas PDH activity regulates pyruvate oxidation in the fasted state. In conclusion, this study has provided evidence that HP MR may be useful to obtain details of metabolic regulation, rather than just reflecting metabolic state. Figure 1 Bicarbonate/pyruvate ratio in fed and fasted rats, following an injection of pyruate or pyruate plus malate. In fed rats, co-infusion of malate increased PDH flux by 31% compared with injection of pyruvate alone (*p=0.02). Fasting reduced PDH flux by 57% (**p=0.002) following injection of pyruvate alone. Co-infusion with malate did not affect PDH flux in fasted rats.

1996 ◽  
Vol 318 (3) ◽  
pp. 997-1006 ◽  
Author(s):  
Derek HERBERT ◽  
Lindsey J PRICE ◽  
Claude ALBAN ◽  
Laure DEHAYE ◽  
Dominique JOB ◽  
...  

The steady-state kinetics of two multifunctional isoforms of acetyl-CoA carboxylase (ACCase) from maize leaves (a major isoform, ACCase1 and a minor isoform, ACCase2) have been investigated with respect to reaction mechanism, inhibition by two graminicides of the aryloxyphenoxypropionate class (quizalofop and fluazifop) and some cellular metabolites. Substrate interaction and product inhibition patterns indicated that ADP and Pi products from the first partial reaction were not released before acetyl-CoA bound to the enzymes. Product inhibition patterns did not match exactly those predicted for an ordered Ter Ter or a random Ter Ter mechanism, but were close to those postulated for an ordered mechanism. ACCase2 was about 1/2000 as sensitive as ACCase1 to quizalofop but only about 1/150 as sensitive to fluazifop. Fitting inhibition data to the Hill equation indicated that binding of quizalofop or fluazifop to ACCase1 was non-cooperative, as shown by the Hill constant (napp) values of 0.86 and 1.16 for quizalofop and fluazifop respectively. Apparent inhibition constant values (K´ from the Hill equation) for ACCase1 were 0.054 µM for quizalofop and 21.8 µM for fluazifop. On the other hand, binding of quizalofop or fluazifop to ACCase2 exhibited positive co-operativity, as shown by the napp values of 1.85 and 1.59 for quizalofop and fluazifop respectively. K´ values for ACCase2 were 1.7 mM for quizalofop and 140 mM for fluazifop. Kinetic parameters for the co-operative binding of quizalofop to maize ACCase2 were close to those of another multifunctional ACCase of limited sensitivity to graminicide, ACC220 from pea. Inhibition of ACCase1 by quizalofop was mixed-type with respect to acetyl-CoA or ATP, but the concentration of acetyl-CoA had the greater effect on the level of inhibition. Neither ACCase1 nor ACCase2 was appreciably sensitive to CoA esters of palmitic acid (16:0) or oleic acid (18:1). Approximate IC50 values were 10 µM (ACCase2) and 50 µM (ACCase1) for both CoA esters. Citrate concentrations up to 1 mM had no effect on ACCase1 activity. Above this concentration, citrate was inhibitory. ACCase2 activity was slightly stimulated by citrate over a broad concentration range (0.25–10 mM). The significance of possible effects of acyl-CoAs or citrate in vivo is discussed.


2012 ◽  
Vol 32 (12) ◽  
pp. 2108-2113 ◽  
Author(s):  
Mor Mishkovsky ◽  
Arnaud Comment ◽  
Rolf Gruetter

The Krebs (or tricarboxylic acid (TCA)) cycle has a central role in the regulation of brain energy regulation and metabolism, yet brain TCA cycle intermediates have never been directly detected in vivo. This study reports the first direct in vivo observation of a TCA cycle intermediate in intact brain, namely, 2-oxoglutarate, a key biomolecule connecting metabolism to neuronal activity. Our observation reveals important information about in vivo biochemical processes hitherto considered undetectable. In particular, it provides direct evidence that transport across the inner mitochondria membrane is rate limiting in the brain. The hyperpolarized magnetic resonance protocol designed for this study opens the way to direct and real-time studies of TCA cycle kinetics.


2006 ◽  
Vol 73 (2) ◽  
pp. 499-507 ◽  
Author(s):  
Oliver Schilling ◽  
Oliver Frick ◽  
Christina Herzberg ◽  
Armin Ehrenreich ◽  
Elmar Heinzle ◽  
...  

ABSTRACT The soil bacterium Bacillus subtilis can use sugars or organic acids as sources of carbon and energy. These nutrients are metabolized by glycolysis, the pentose phosphate pathway, and the Krebs citric acid cycle. While the response of B. subtilis to the availability of sugars is well understood, much less is known about the changes in metabolism if organic acids feeding into the Krebs cycle are provided. If B. subtilis is supplied with succinate and glutamate in addition to glucose, the cells readjust their metabolism as determined by transcriptome and metabolic flux analyses. The portion of glucose-6-phosphate that feeds into the pentose phosphate pathway is significantly increased in the presence of organic acids. Similarly, important changes were detected at the level of pyruvate and acetyl coenzyme A (acetyl-CoA). In the presence of organic acids, oxaloacetate formation is strongly reduced, whereas the formation of lactate is significantly increased. The alsSD operon required for acetoin formation is strongly induced in the presence of organic acids; however, no acetoin formation was observed. The recently discovered phosphorylation of acetolactate decarboxylase may provide an additional level of control of metabolism. In the presence of organic acids, both types of analyses suggest that acetyl-CoA was catabolized to acetate rather than used for feeding the Krebs cycle. Our results suggest that future work has to concentrate on the posttranslational mechanisms of metabolic regulation.


1980 ◽  
Vol 190 (3) ◽  
pp. 705-710 ◽  
Author(s):  
P A Lazo ◽  
A Sols

1. AMP is an activator of the pyruvate dehydrogenase complex of the Ehrlich—Lettré ascites tumour, increasing its V up to 2-fold, with Ka of 40 microM at pH 7.4. This activation appears to be an allosteric effect on the decarboxylase subunit of the complex. 2. The pyruvate dehydrogenase complex has a Km for pyruvate within the range 17—36 microM depending on the pH, the optimum pH being approx. 7.4, with a V of approx. 0.1 unit/g of cells. The rate-limiting step is dependent on the transformation of the enzyme—substrate complex. The Km for CoA is 15 microM. The Km for NAD+ is 0.7 mM for both the complex and the lipoamide dehydrogenase. The complex is inhibited by acetyl-CoA competitively with CoA; the Ki is 60 microM. The lipoamide dehydrogenase is inhibited by NADH and NADPH competitively with NAD+, with Ki values of 80 and 90 microM respectively. In the reverse reaction the Km values for NADH and NADPH are essentially equal to their Ki values for the forward reaction, the V for the latter being 0.09 of that of the former. Hence the reaction rate of the complex in vivo is likely to be markedly affected by feedback isosteric inhibition by reduced nicotinamide nucleotides and possibly acetyl-CoA.


2014 ◽  
Vol 7 (6) ◽  
pp. 895-904 ◽  
Author(s):  
Michael S. Dodd ◽  
Helen J. Atherton ◽  
Carolyn A. Carr ◽  
Daniel J. Stuckey ◽  
James A. West ◽  
...  

Author(s):  
D.J. Meyerhoff

Magnetic Resonance Imaging (MRI) observes tissue water in the presence of a magnetic field gradient to study morphological changes such as tissue volume loss and signal hyperintensities in human disease. These changes are mostly non-specific and do not appear to be correlated with the range of severity of a certain disease. In contrast, Magnetic Resonance Spectroscopy (MRS), which measures many different chemicals and tissue metabolites in the millimolar concentration range in the absence of a magnetic field gradient, has been shown to reveal characteristic metabolite patterns which are often correlated with the severity of a disease. In-vivo MRS studies are performed on widely available MRI scanners without any “sample preparation” or invasive procedures and are therefore widely used in clinical research. Hydrogen (H) MRS and MR Spectroscopic Imaging (MRSI, conceptionally a combination of MRI and MRS) measure N-acetylaspartate (a putative marker of neurons), creatine-containing metabolites (involved in energy processes in the cell), choline-containing metabolites (involved in membrane metabolism and, possibly, inflammatory processes),


Sign in / Sign up

Export Citation Format

Share Document