field gradient
Recently Published Documents


TOTAL DOCUMENTS

2549
(FIVE YEARS 164)

H-INDEX

79
(FIVE YEARS 7)

2021 ◽  
Author(s):  
Mahmoud Elsayed ◽  
Hyung Kwak ◽  
Ammar El-Husseiny ◽  
Mohamed Mahmoud

Abstract Tortuosity, in general characterizes the geometric complexity of porous media. It is considered as one of the key factors in characterizing the heterogonous structure of porous media and has significant implications for macroscopic transport flow properties. There are four widely used definitions of tortuosity, that are relevant to different fields from hydrology to chemical and petroleum engineering, which are: geometric, hydraulic, electrical, and diffusional. Recent work showed that hydraulic, electrical and diffusional tortuosity values are roughly equal to each other in glass beads. Nevertheless, the relationship between the different definitions of Tortuosity in natural rocks is not well understood yet. Understanding the relationship between the different Tortuosity definitions in rocks can help to establish a workflow that allows us to estimate other types from the available technique. Therefore, the objective of this study is to investigate the relationship between the different tortuosity definitions in natural rocks. A major focus of this work is to utilize Nuclear Magnetic Resonance (NMR) technology to estimate Tortuosity. Such technique has been traditionally used to obtain diffusional tortuosity which can be defined as the ratio of the free fluid self-diffusion coefficient to the restricted fluid self-diffusion coefficient inside the porous media. In this study, the following techniques were used to quantify hydraulic, electrical, and diffusional tortuosity respectively on the same rock sample: (1) Microcomputed Tomography 3D imaging (2) Four-Electrodes resistivity measurements (3) Pulsed-Field Gradient Nuclear Magnetic Resonance (PFG NMR). PFG NMR is very powerful, non-invasive technique employed to measure the self-diffusion coefficient for free and confined fluids. The measurements were done based on two carbonate rock core plugs characterized by variable porosity, permeability and texture complexity. Results show that PFG NMR can be applied directionally to quantify the pore network anisotropy created by fractures. For both samples, hydraulic tortuosity was found to have the lowest magnitude compared to geometric, electrical and diffusional tortuosity. This could be explained by the more heterogeneous microstructure of carbonate rocks. NMR technique has however advantages over the other electrical and imaging techniques for tortuosity characterization: it is faster, non-destructive and can be applied in well bore environment (in situ). We therefore conclude that NMR can provide a tool for estimating not only diffusional tortuosity but also for indirectly obtaining hydraulic and electrical tortuosity.


Author(s):  
Hiroyuki Hirakata ◽  
Yasuyuki Fukuda ◽  
Takahiro Shimada

Abstract Two-dimensional (2D) materials exhibit a high strength and flexibility along with unique electrical-mechanical multiphysics properties. In this study, we experimentally demonstrated the electromechanical response of a multilayer 2D material, 2H-phase MoS2, by using a piezoresponse force microscope. In particular, the dominant physical quantity of the deformation response was determined by independently controlling the electric field and electric field gradient by changing the probe shape and material thickness (number of layers). The multilayer MoS2 exhibited an out-of-plane electrical-mechanical deformation response that followed and was inverted with respect to positive and negative voltages, respectively. Moreover, the relationships between the electric field gradient and strain were similar for all shapes of the probe tip and film thickness values. This result indicated that the electrical-mechanical response of this material was dominated by the electric field gradient, and the strain could be attributed to the converse flexoelectric effect. The findings can provide guidance for the realization of ultrathin electromechanical devices.


2021 ◽  
Vol 2 (2) ◽  
pp. 827-834
Author(s):  
Victor V. Rodin ◽  
Stephan J. Ginthör ◽  
Matthias Bechmann ◽  
Hervé Desvaux ◽  
Norbert Müller

Abstract. Nuclear spin noise spectroscopy in the absence of radio frequency pulses was studied under the influence of pulsed field gradients (PFGs) on pure and mixed liquids. Under conditions where the radiation-damping-induced line broadening is smaller than the gradient-dependent inhomogeneous broadening, echo responses can be observed in difference spectra between experiments employing pulsed field gradient pairs of the same and opposite signs. These observed spin noise gradient echoes (SNGEs) were analyzed through a simple model to describe the effects of transient phenomena. Experiments performed on high-resolution nuclear magnetic resonance (NMR) probes demonstrate how refocused spin noise behaves and how it can be exploited to determine sample properties. In bulk liquids and their mixtures, transverse relaxation times and translational diffusion constants can be determined from SNGE spectra recorded following tailored sequences of magnetic field gradient pulses.


Author(s):  
Zdeněk Němeček ◽  
Kostiantyn Grygorov ◽  
Jana Šafránková ◽  
Jiří Šimůnek ◽  
Gilbert Pi

Magnetic pressure inside the magnetopause is usually balanced with a sum of thermal plasma and magnetic pressures on the magnetosheath side. However, observations reveal that the magnetosheath magnetic field can be frequently larger than that in the magnetosphere (inverse magnetic field gradient across the magnetopause), and thus, the enhanced pressure from the magnetosheath side seems to be uncompensated. Such events are rare in the subsolar region, but their occurrence rate increases toward flanks. The analysis, based on statistical processing of about 35,000 THEMIS magnetopause crossings collected in the course of the years 2007–2017, shows that these events are more frequently observed under enhanced geomagnetic activity that is connected with a strong southward IMF. Case studies reveal that such a state of the magnetopause boundary layers can persist for several hours. This study discusses conditions and mechanisms keeping the pressure balance across the magnetopause under these conditions.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Philipp Münzner ◽  
Catalin Gainaru ◽  
Roland Böhmer

Abstract Li-bis(trifluoromethylsulfonyl)imide based ionic liquids with either butyl-trimethylammonium or N,N-dimethyl-N-(2-(propionyloxy)-ethyl)butan-1-ammonium as the anion were studied using proton and fluorine relaxometry as well as using field-gradient diffusometry to gain separate access to cation and anion dynamics in these compounds. The transport parameters obtained for these ionic liquids are compared with the estimates based on the conductivity data from literature and from the present work. The impact of cation size on correlation effects, the latter parameterized in terms of various Haven ratios, is mapped out.


Author(s):  
Kee Sung Han ◽  
J. David Bazak ◽  
Ying Chen ◽  
Trent R. Graham ◽  
Nancy M. Washton ◽  
...  

2021 ◽  
Vol 10 (2) ◽  
pp. 257-264
Author(s):  
Zhijian Zhou ◽  
Zhilong Liu ◽  
Wenduo Li ◽  
Yihang Wang ◽  
Chao Wang

Abstract. Aeromagnetic exploration is an important method of geophysical exploration. We study the compensation method of the towed bird system and establish the towed bird interference model. Due to the geomagnetic gradient changing greatly, the geomagnetic gradient is considered in the towed bird interference model. In this paper, we model the geomagnetic field gradient and analyze the influence of the towed bird system on the aeromagnetic compensation results. Finally, we apply the ridge regression method to solve the problem. We verify the feasibility of this compensation method through actual flight tests and further improve the data quality of the towed bird interference.


Sign in / Sign up

Export Citation Format

Share Document