Abstract P618: Inactivation of Mitochondrial Deacetylase Sirt3 Promotes Vascular Oxidative Stress, Increases Endothelial Dysfunction and Exacerbates Hypertension
Endothelial dysfunction is associated with aging, diabetes, hyperlipidemia, obesity and these risk factors affect the expression and activity of the mitochondrial deacetylase Sirt3. Sirt3 activates major antioxidant SOD2 by deacetylation of specific lysine residues and Sirt3 depletion increases oxidative stress. We hypothesized that loss of vascular Sirt3 increases endothelial dysfunction, promotes hypertension and end organ damage. The role of vascular Sirt3 was studied in wild-type C57Bl/6J mice and tamoxifen-inducible smooth muscle specific Sirt3 knockout mice (Smc Sirt3 KO ) using angiotensin II model of hypertension (Ang II, 0.7 mg/kg/day). Western blot showed 30% reduction of vascular Sirt3 and 2-fold increase in SOD2 acetylation in Ang II-infused WT mice. We have tested if ex vivo treatment of aorta with Sirt3 activator resveratrol improves endothelial function. Indeed, ex vivo incubation with resveratrol (10 μM) significantly reduced SOD2 acetylation, diminished mitochondrial O 2 and increased endothelial NO to normal level while Sirt3-inactive analog dihydroresveratrol had no effect. Specific role of vascular Sirt3 was studied in Smc Sirt3 KO mice by crossing floxed Sirt3 mice with mice carrying gene for inducible cre in the vascular smooth muscle. Sirt3 deletion exacerbates hypertension (165 mm Hg vs 155 mm Hg in wild-type) and significantly increases mortality in Ang II-infused Smc Sirt3 KO mice (60% vs 10% in wild-type) associated with severe edema and aortic aneurysm (100% vs 20% in wild-type). Decrease of NO is a hallmark of endothelial dysfunction in hypertension due to vascular oxidative stress. Indeed, Ang II infusion increased vascular O 2 by 2-fold and reduced endothelial NO by 2-fold. Interestingly, Ang II infusion in Smc Sirt3 KO mice caused severe vascular oxidative stress (3-fold increase in O 2 ) and exacerbated endothelial dysfunction (4-fold decrease in NO). These data indicate that reduced vascular Sirt3 activity occurs in hypertension and this promotes vascular oxidative stress, increases endothelial dysfunction, exacerbates hypertension, increases end-organ-damage and mortality. It is conceivable that Sirt3 agonists and SOD2 mimetics may have therapeutic potential in cardiovascular disease.