scholarly journals When Far Becomes Near: Remapping of Space by Tool Use

2000 ◽  
Vol 12 (3) ◽  
pp. 415-420 ◽  
Author(s):  
Anna Berti ◽  
Francesca Frassinetti

Far (extrapersonal) and near (peripersonal) spaces are behaviorally defined as the space outside the hand-reaching distance and the space within the hand-reaching distance. Animal and human studies have confirmed this distinction, showing that space is not homogeneously represented in the brain. In this paper we demonstrate that the coding of space as “far” and “near” is not only determined by the hand-reaching distance, but it is also dependent on how the brain represents the extension of the body space. We will show that when the cerebral representation of body space is extended to include objects or tools used by the subject, space previously mapped as far can be remapped as near. Patient P.P., after a right hemisphere stroke, showed a dissociation between near and far spaces in the manifestation of neglect. Indeed, in a line bisection task, neglect was apparent in near space, but not in far space when bisection in the far space was performed with a projection lightpen. However, when in the far space bisection was performed with a stick, used by the patient to reach the line, neglect appeared and was as severe as neglect in the near space. An artificial extension of the patient's body (the stick) caused a remapping of far space as near space.

2021 ◽  
Vol 11 (3) ◽  
pp. 376
Author(s):  
Carmelo Mario Vicario ◽  
Gabriella Martino ◽  
Alex Marcuzzo ◽  
Giuseppe Craparo

Neuroscience research links alexithymia, the difficulty in identifying and describing feelings and emotions, with left hemisphere dominance and/or right hemisphere deficit. To provide behavioral evidence for this neuroscientific hypothesis, we explored the relationship between alexithymia and performance in a line bisection task, a standard method for evaluating visuospatial processing in relation to right hemisphere functioning. We enrolled 222 healthy participants who completed a version of the 20-item Toronto Alexithymia Scale (TAS-20), which measures alexithymia, and were asked to mark (bisect) the center of a 10-cm horizontal segment. The results document a significant rightward shift in the center of the line in participants with borderline and manifest alexithymia compared with non-alexithymic individuals. The higher the TAS-20 score, the greater the rightward shift in the line bisection task. This finding supports the right hemisphere deficit hypothesis in alexithymia and suggests that visuospatial abnormalities may be an important component of this mental condition.


2020 ◽  
Vol 79 (1) ◽  
pp. 5-14
Author(s):  
Giulia Pugnaghi ◽  
Robert Schnuerch ◽  
Henning Gibbons ◽  
Daniel Memmert ◽  
Carina Kreitz

Abstract. The two hemispheres of the human brain are asymmetrically involved in representing a person’s motivational orientation: Approach motivation is reflected in greater activation of the left hemisphere, whereas avoidance motivation more strongly activates the right hemisphere. Visuospatial bias, as assessed in the line-bisection task, is often used as a simple behavioral measure of relative hemispheric activation. In three experiments, we investigated whether affect-induced approach and avoidance motivation are associated with spatial biases in line-bisection performance. Happy or terrifying pictures (Experiment 1, N = 70), happy or sad music (Experiment 2, N = 50), and joyful or frightening videos (Experiment 3, N = 90) were used to induce negative and positive affect. Mood-induction procedures successfully changed emotional states in the intended direction. However, our analyses revealed no effect of mood on visuospatial biases in the line-bisection task. Additional Bayesian analyses also provided more evidence against the hypothesized effect than in favor of it. Thus, visuospatial bias in line bisection does not seem to be a sensitive measure of approach and avoidance motivation induced by positive and negative affect.


2018 ◽  
Vol 71 (11) ◽  
pp. 2325-2333 ◽  
Author(s):  
Zaira Cattaneo ◽  
Luca Rinaldi ◽  
Carlo Geraci ◽  
Carlo Cecchetto ◽  
Costanza Papagno

In this study, we investigated whether auditory deprivation leads to a more balanced bilateral control of spatial attention in the haptic space. We tested four groups of participants: early deaf, early blind, deafblind, and control (normally hearing and sighted) participants. Using a haptic line bisection task, we found that while normally hearing individuals (even when blind) showed a significant tendency to bisect to the left of the veridical midpoint (i.e., pseudoneglect), deaf individuals did not show any significant directional bias. This was the case of both deaf signers and non-signers, in line with prior findings obtained using a visual line bisection task. Interestingly, deafblind individuals also erred significantly to the left, resembling the pattern of early blind and control participants. Overall, these data critically suggest that deafness induces changes in the hemispheric asymmetry subtending the orientation of spatial attention also in the haptic modality. Moreover, our findings indicate that what counterbalances the right-hemisphere dominance in the control of spatial attention is not the lack of auditory input per se, nor sign language use, but rather the heavier reliance on visual experience induced by early auditory deprivation.


Author(s):  
Carmelo Mario Vicario ◽  
Gabriella Martino ◽  
Alex Marcuzzo ◽  
Giuseppe Craparo

The research in neuroscience links alexithymia, the difficulty of identifying and describing feelings and emotions, with a left hemisphere preference and/or a right hemisphere deficit. To provide a neuropsychological support to this finding, we explored the relationship between alexithymia and the performance in a line bisection task, a standard method to evaluate spatial attention in relation with the functioning of the right hemisphere. 222 healthy participants completed a version of the TAS-20 scale, which measures alexithymia, and were asked to mark (bisect) the center of a 10 cm horizontal segment. The results document a significant rightward shift of the line center in borderline and manifest alexithymic participants, as compared to non-alexithymic individuals. Moreover, the higher the TAS-20 score the greater the rightward shift in the line bisection task. This result supports the right-hemisphere deficit hypothesis in alexithymia and suggests that visuospatial abnormalities may be an inner component of their profile.


Author(s):  
Samuel B. Hunley ◽  
Arwen M. Marker ◽  
Stella F. Lourenco

Abstract. The current study investigated individual differences in the flexibility of peripersonal space (i.e., representational space near the body), specifically in relation to trait claustrophobic fear (i.e., fear of suffocating or being physically restricted). Participants completed a line bisection task with either a laser pointer (Laser condition), allowing for a baseline measure of the size of one’s peripersonal space, or a stick (Stick condition), which produces expansion of one’s peripersonal space. Our results revealed that individuals high in claustrophobic fear had larger peripersonal spaces than those lower in claustrophobic fear, replicating previous research. We also found that, whereas individuals low in claustrophobic fear demonstrated the expected expansion of peripersonal space in the Stick condition, individuals high in claustrophobic fear showed less expansion, suggesting decreased flexibility. We discuss these findings in relation to the defensive function of peripersonal space and reduced attentional flexibility associated with trait anxieties.


2009 ◽  
Vol 36 (S 02) ◽  
Author(s):  
B Machner ◽  
A Sprenger ◽  
U Hansen ◽  
W Heide ◽  
C Helmchen

Author(s):  
Gemma Learmonth ◽  
Marietta Papadatou-Pastou

AbstractYoung adults exhibit a small asymmetry of visuospatial attention that favours the left side of space relative to the right (pseudoneglect). However, it remains unclear whether this leftward bias is maintained, eliminated or shifted rightward in older age. Here we present two meta-analyses that aimed to identify whether adults aged ≥50 years old display a group-level spatial attention bias, as indexed by the line bisection and the landmark tasks. A total of 69 datasets from 65 studies, involving 1654 participants, were analysed. In the meta-analysis of the line bisection task (n = 63), no bias was identified for studies where the mean age was ≥50, but there was a clear leftward bias in a subset where all individual participants were aged ≥50. There was no moderating effect of the participant’s age or sex, line length, line position, nor the presence of left or right cues. There was a small publication bias in favour of reporting rightward biases. Of note, biases were slightly more leftward in studies where participants had been recruited as part of a stand-alone older group, compared to studies where participants were recruited as controls for a clinical study. Similarly, no spatial bias was observed in the meta-analysis of the landmark task, although the number of studies included was small (n = 6). Overall, these results indicate that over 50s maintain a group-level leftward bias on the line bisection task, but more studies are needed to determine whether this bias can be modulated by stimulus- or state-dependent factors.


2014 ◽  
Vol 232 (4) ◽  
pp. 1327-1334 ◽  
Author(s):  
Sergio Chieffi ◽  
Tina Iachini ◽  
Alessandro Iavarone ◽  
Giovanni Messina ◽  
Andrea Viggiano ◽  
...  

2009 ◽  
Vol 256 (2) ◽  
pp. 289-290 ◽  
Author(s):  
B. Machner ◽  
A. Sprenger ◽  
U. Hansen ◽  
W. Heide ◽  
C. Helmchen

2002 ◽  
Vol 41 (04) ◽  
pp. 245-260 ◽  
Author(s):  
C. Rosse ◽  
J. F. Brinkley

Summary Objectives: Survey current work primarily funded by the US Human Brain Project (HBP) that involves substantial use of images. Organize this work around a framework based on the physical organization of the body. Methods: Pointers to individual research efforts were obtained through the HBP home page as well as personal contacts from HBP annual meetings. References from these sources were followed to find closely related work. The individual research efforts were then studied and characterized. Results: The subject of the review is the intersection of neuroinformatics (information about the brain), imaging informatics (information about images), and structural informatics (information about the physical structure of the body). Of the 30 funded projects currently listed on the HBP web site, at least 22 make heavy use of images. These projects are described in terms of broad categories of structural imaging, functional imaging, and image-based brain information systems. Conclusions: Understanding the most complex entity known (the brain) gives rise to many interesting and difficult problems in informatics and computer science. Although much progress has been made by HBP and other neuroinformatics researchers, a great many problems remain that will require substantial informatics research efforts. Thus, the HPB can and should be seen as an excellent driving application area for biomedical informatics research.


Sign in / Sign up

Export Citation Format

Share Document