Automatic Versus Contingent Mechanisms of Sensory-Driven Neural Biasing and Reflexive Attention

2005 ◽  
Vol 17 (8) ◽  
pp. 1341-1352 ◽  
Author(s):  
Joseph B. Hopfinger ◽  
Anthony J. Ries

Recent studies have generated debate regarding whether reflexive attention mechanisms are triggered in a purely automatic stimulus-driven manner. Behavioral studies have found that a nonpredictive “cue” stimulus will speed manual responses to subsequent targets at the same location, but only if that cue is congruent with actively maintained top-down settings for target detection. When a cue is incongruent with top-down settings, response times are unaffected, and this has been taken as evidence that reflexive attention mechanisms were never engaged in those conditions. However, manual response times may mask effects on earlier stages of processing. Here, we used event-related potentials to investigate the interaction of bottom-up sensory-driven mechanisms and top-down control settings at multiple stages of processing in the brain. Our results dissociate sensory-driven mechanisms that automatically bias early stages of visual processing from later mechanisms that are contingent on top-down control. An early enhancement of target processing in the extrastriate visual cortex (i.e., the P1 component) was triggered by the appearance of a unique bright cue, regardless of top-down settings. The enhancement of visual processing was prolonged, however, when the cue was congruent with top-down settings. Later processing in posterior temporal-parietal regions (i.e., the ipsilateral invalid negativity) was triggered automatically when the cue consisted of the abrupt appearance of a single new object. However, in cases where more than a single object appeared during the cue display, this stage of processing was contingent on top-down control. These findings provide evidence that visual information processing is biased at multiple levels in the brain, and the results distinguish automatically triggered sensory-driven mechanisms from those that are contingent on top-down control settings.

Author(s):  
Martin V. Butz ◽  
Esther F. Kutter

While bottom-up visual processing is important, the brain integrates this information with top-down, generative expectations from very early on in the visual processing hierarchy. Indeed, our brain should not be viewed as a classification system, but rather as a generative system, which perceives something by integrating sensory evidence with the available, learned, predictive knowledge about that thing. The involved generative models continuously produce expectations over time, across space, and from abstracted encodings to more concrete encodings. Bayesian information processing is the key to understand how information integration must work computationally – at least in approximation – also in the brain. Bayesian networks in the form of graphical models allow the modularization of information and the factorization of interactions, which can strongly improve the efficiency of generative models. The resulting generative models essentially produce state estimations in the form of probability densities, which are very well-suited to integrate multiple sources of information, including top-down and bottom-up ones. A hierarchical neural visual processing architecture illustrates this point even further. Finally, some well-known visual illusions are shown and the perceptions are explained by means of generative, information integrating, perceptual processes, which in all cases combine top-down prior knowledge and expectations about objects and environments with the available, bottom-up visual information.


2015 ◽  
Vol 45 (10) ◽  
pp. 2111-2122 ◽  
Author(s):  
W. Li ◽  
T. M. Lai ◽  
C. Bohon ◽  
S. K. Loo ◽  
D. McCurdy ◽  
...  

BackgroundAnorexia nervosa (AN) and body dysmorphic disorder (BDD) are characterized by distorted body image and are frequently co-morbid with each other, although their relationship remains little studied. While there is evidence of abnormalities in visual and visuospatial processing in both disorders, no study has directly compared the two. We used two complementary modalities – event-related potentials (ERPs) and functional magnetic resonance imaging (fMRI) – to test for abnormal activity associated with early visual signaling.MethodWe acquired fMRI and ERP data in separate sessions from 15 unmedicated individuals in each of three groups (weight-restored AN, BDD, and healthy controls) while they viewed images of faces and houses of different spatial frequencies. We used joint independent component analyses to compare activity in visual systems.ResultsAN and BDD groups demonstrated similar hypoactivity in early secondary visual processing regions and the dorsal visual stream when viewing low spatial frequency faces, linked to the N170 component, as well as in early secondary visual processing regions when viewing low spatial frequency houses, linked to the P100 component. Additionally, the BDD group exhibited hyperactivity in fusiform cortex when viewing high spatial frequency houses, linked to the N170 component. Greater activity in this component was associated with lower attractiveness ratings of faces.ConclusionsResults provide preliminary evidence of similar abnormal spatiotemporal activation in AN and BDD for configural/holistic information for appearance- and non-appearance-related stimuli. This suggests a common phenotype of abnormal early visual system functioning, which may contribute to perceptual distortions.


Author(s):  
Martin V. Butz ◽  
Esther F. Kutter

This chapter addresses primary visual perception, detailing how visual information comes about and, as a consequence, which visual properties provide particularly useful information about the environment. The brain extracts this information systematically, and also separates redundant and complementary visual information aspects to improve the effectiveness of visual processing. Computationally, image smoothing, edge detectors, and motion detectors must be at work. These need to be applied in a convolutional manner over the fixated area, which are computations that are predestined to be solved by means of cortical columnar structures in the brain. On the next level, the extracted information needs to be integrated to be able to segment and detect object structures. The brain solves this highly challenging problem by incorporating top-down expectations and by integrating complementary visual information aspects, such as light reflections, texture information, line convergence information, shadows, and depth information. In conclusion, the need for integrating top-down visual expectations to form complete and stable perceptions is made explicit.


2020 ◽  
Author(s):  
Alexandra Begau ◽  
Laura-Isabelle Klatt ◽  
Edmund Wascher ◽  
Daniel Schneider ◽  
Stephan Getzmann

AbstractIn natural conversations, visible mouth and lip movements play an important role in speech comprehension. There is evidence that visual speech information improves speech comprehension, especially for older adults and under difficult listening conditions. However, the neurocognitive basis is still poorly understood. The present EEG experiment investigated the benefits of audiovisual speech in a dynamic cocktail-party scenario with 22 (aged 20 to 34 years) younger and 20 (aged 55 to 74 years) older participants. We presented three simultaneously talking faces with a varying amount of visual speech input (still faces, visually unspecific and audiovisually congruent). In a two-alternative forced-choice task, participants had to discriminate target words (“yes” or “no”) among two distractors (one-digit number words). In half of the experimental blocks, the target was always presented from a central position, in the other half, occasional switches to a lateral position could occur. We investigated behavioral and electrophysiological modulations due to age, location switches and the content of visual information, analyzing response times and accuracy as well as the P1, N1, P2, N2 event-related potentials (ERPs) and the contingent negative variation (CNV) in the EEG. We found that audiovisually congruent speech information improved performance and modulated ERP amplitudes in both age groups, suggesting enhanced preparation and integration of the subsequent auditory input. However, these benefits were only observed as long as no location switches occurred. To conclude, meaningful visual information in a multi-talker setting, when presented from the expected location, is shown to be beneficial for both younger and older adults.


2021 ◽  
Vol 12 ◽  
Author(s):  
Petra Csizmadia ◽  
István Czigler ◽  
Boglárka Nagy ◽  
Zsófia Anna Gaál

We do not know enough about the cognitive background of creativity despite its significance. Using an active oddball paradigm with unambiguous and ambiguous portrait paintings as the standard stimuli, our aim was to examine whether: creativity in the figural domain influences the perception of visual stimuli; any stages of visual processing; or if healthy aging has an effect on these processes. We investigated event related potentials (ERPs) and applied ERP decoding analyses in four groups: younger less creative; younger creative; older less creative; and older creative adults. The early visual processing did not differ between creativity groups. In the later ERP stages the amplitude for the creative compared with the less creative groups was larger between 300 and 500 ms. The stimuli types were clearly distinguishable: within the 300–500 ms range the amplitude was larger for ambiguous rather than unambiguous paintings, but this difference in the traditional ERP analysis was only observable in the younger, not elderly groups, who also had this difference when using decoding analysis. Our results could not prove that visual creativity influences the early stage of perception, but showed creativity had an effect on stimulus processing in the 300–500 ms range, in indexing differences in top-down control, and having more flexible cognitive control in the younger creative group.


2010 ◽  
Vol 104 (2) ◽  
pp. 972-983 ◽  
Author(s):  
M. van Elk ◽  
H. T. van Schie ◽  
S.F.W. Neggers ◽  
H. Bekkering

The present study investigated the selection for action hypothesis, according to which a subject's action intention to perform a movement influences the way in which visual information is being processed. Subjects were instructed in separate blocks either to grasp or to point to a three-dimensional target-object and event-related potentials were recorded relative to stimulus onset. It was found that grasping compared with pointing resulted in a stronger N1 component and a subsequent selection negativity, which were localized to the lateral occipital complex. These effects suggest that the intention to grasp influences the processing of action-relevant features in ventral stream areas already at an early stage (e.g., enhanced processing of object orientation for grasping). These findings provide new insight in the neural and temporal dynamics underlying perception–action coupling and provide neural evidence for a selection for action principle in early human visual processing.


2017 ◽  
Author(s):  
L Berkovitch ◽  
A Del Cul ◽  
M Maheu ◽  
S Dehaene

AbstractPrevious research suggests that the conscious perception of a masked stimulus is impaired in schizophrenia, while unconscious bottom-up processing of the same stimulus, as assessed by subliminal priming, can be preserved. Here, we test this postulated dissociation between intact bottom-up and impaired top-down processing and evaluate its brain mechanisms using high-density recordings of event-related potentials. Sixteen patients with schizophrenia and sixteen controls were exposed to peripheral digits with various degrees of visibility, under conditions of either focused attention or distraction by another task. In the distraction condition, the brain activity evoked by masked digits was drastically reduced in both groups, but early bottom-up visual activation could still be detected and did not differ between patients and controls. By contrast, under focused top-down attention, a major impairment was observed: in patients, contrary to controls, the late non-linear ignition associated with the P3 component was reduced. Interestingly, the patients showed an essentially normal attentional amplification of the PI and N2 components. These results suggest that some but not all top-down attentional amplification processes are impaired in schizophrenia, while bottom-up processing seems to be preserved.


Author(s):  
Alice Mado Proverbio ◽  
and Alberto Zani

A hemispheric asymmetry is known for the processing of global vs. local visual information. In this study, we investigated the existence of a hemispheric asymmetry for visual processing of low vs. high spatial frequency gratings. Event-related potentials were recorded in a group of healthy right-handed volunteers from 30 scalp sites. Six types of stimuli (1.5, 3 and 6 c/deg gratings) were randomly flashed 180 times in the left and right upper hemi-fields. Stimulus duration was 80 ms and ISI ranged between 850-1000 ms. Participants had to pay attention and respond to targets based on their spatial frequency and location, or to passively look at the stimuli. C1 and P1 visual responses, as well as a later Selection negativity and a P300 components of ERPs were quantified and subjected to repeated-measure ANOVAs. Overall, performance was faster for the RVF, thus suggesting a left hemispheric advantage for attentional selection of local elements. Similarly, the analysis of mean area amplitude of C1 (60-110 ms) sensory response showed a stronger attentional effect (F+L+ vs. F-L+) at left occipital areas, thus suggesting the sensory nature of this hemispheric asymmetry.


2009 ◽  
Vol 23 (2) ◽  
pp. 63-76 ◽  
Author(s):  
Silke Paulmann ◽  
Sarah Jessen ◽  
Sonja A. Kotz

The multimodal nature of human communication has been well established. Yet few empirical studies have systematically examined the widely held belief that this form of perception is facilitated in comparison to unimodal or bimodal perception. In the current experiment we first explored the processing of unimodally presented facial expressions. Furthermore, auditory (prosodic and/or lexical-semantic) information was presented together with the visual information to investigate the processing of bimodal (facial and prosodic cues) and multimodal (facial, lexic, and prosodic cues) human communication. Participants engaged in an identity identification task, while event-related potentials (ERPs) were being recorded to examine early processing mechanisms as reflected in the P200 and N300 component. While the former component has repeatedly been linked to physical property stimulus processing, the latter has been linked to more evaluative “meaning-related” processing. A direct relationship between P200 and N300 amplitude and the number of information channels present was found. The multimodal-channel condition elicited the smallest amplitude in the P200 and N300 components, followed by an increased amplitude in each component for the bimodal-channel condition. The largest amplitude was observed for the unimodal condition. These data suggest that multimodal information induces clear facilitation in comparison to unimodal or bimodal information. The advantage of multimodal perception as reflected in the P200 and N300 components may thus reflect one of the mechanisms allowing for fast and accurate information processing in human communication.


Sign in / Sign up

Export Citation Format

Share Document