Combining Convergence and Diversity in Evolutionary Multiobjective Optimization

2002 ◽  
Vol 10 (3) ◽  
pp. 263-282 ◽  
Author(s):  
Marco Laumanns ◽  
Lothar Thiele ◽  
Kalyanmoy Deb ◽  
Eckart Zitzler

Over the past few years, the research on evolutionary algorithms has demonstrated their niche in solving multiobjective optimization problems, where the goal is to find a number of Pareto-optimal solutions in a single simulation run. Many studies have depicted different ways evolutionary algorithms can progress towards the Pareto-optimal set with a widely spread distribution of solutions. However, none of the multiobjective evolutionary algorithms (MOEAs) has a proof of convergence to the true Pareto-optimal solutions with a wide diversity among the solutions. In this paper, we discuss why a number of earlier MOEAs do not have such properties. Based on the concept of ɛ-dominance, new archiving strategies are proposed that overcome this fundamental problem and provably lead to MOEAs that have both the desired convergence and distribution properties. A number of modifications to the baseline algorithm are also suggested. The concept of ɛ-dominance introduced in this paper is practical and should make the proposed algorithms useful to researchers and practitioners alike.

Axioms ◽  
2019 ◽  
Vol 8 (1) ◽  
pp. 32 ◽  
Author(s):  
Benjamín Barán ◽  
Marcos Villagra

In this work we show how to use a quantum adiabatic algorithm to solve multiobjective optimization problems. For the first time, we demonstrate a theorem proving that the quantum adiabatic algorithm can find Pareto-optimal solutions in finite-time, provided some restrictions to the problem are met. A numerical example illustrates an application of the theorem to a well-known problem in multiobjective optimization. This result opens the door to solve multiobjective optimization problems using current technology based on quantum annealing.


2019 ◽  
Vol 53 (3) ◽  
pp. 867-886
Author(s):  
Mehrdad Ghaznavi ◽  
Narges Hoseinpoor ◽  
Fatemeh Soleimani

In this study, a Newton method is developed to obtain (weak) Pareto optimal solutions of an unconstrained multiobjective optimization problem (MOP) with fuzzy objective functions. For this purpose, the generalized Hukuhara differentiability of fuzzy vector functions and fuzzy max-order relation on the set of fuzzy vectors are employed. It is assumed that the objective functions of the fuzzy MOP are twice continuously generalized Hukuhara differentiable. Under this assumption, the relationship between weakly Pareto optimal solutions of a fuzzy MOP and critical points of the related crisp problem is discussed. Numerical examples are provided to demonstrate the efficiency of the proposed methodology. Finally, the convergence analysis of the method under investigation is discussed.


Author(s):  
Arne Herzel ◽  
Stefan Ruzika ◽  
Clemens Thielen

Algorithms for approximating the nondominated set of multiobjective optimization problems are reviewed. The approaches are categorized into general methods that are applicable under mild assumptions and, thus, to a wide range of problems, and into algorithms that are specifically tailored to structured problems. All in all, this survey covers 52 articles published within the last 41 years, that is, between 1979 and 2020. Summary of Contribution: In many problems in operations research, several conflicting objective functions have to be optimized simultaneously, and one is interested in finding Pareto optimal solutions. Because of the high complexity of finding Pareto optimal solutions and their usually very large number, however, the exact solution of such multiobjective problems is often very difficult, which motivates the study of approximation algorithms for multiobjective optimization problems. This research area uses techniques and methods from algorithmics and computing in order to efficiently determine approximate solutions to many well-known multiobjective problems from operations research. Even though approximation algorithms for multiobjective optimization problems have been investigated for more than 40 years and more than 50 research articles have been published on this topic, this paper provides the first survey of this important area at the intersection of computing and operations research.


2015 ◽  
Vol 2015 ◽  
pp. 1-18 ◽  
Author(s):  
Meirong Chen ◽  
Yinan Guo ◽  
Haiyuan Liu ◽  
Chun Wang

In dynamic multiobjective optimization problems, the environmental parameters change over time, which makes the true pareto fronts shifted. So far, most works of research on dynamic multiobjective optimization methods have concentrated on detecting the changed environment and triggering the population based optimization methods so as to track the moving pareto fronts over time. Yet, in many real-world applications, it is not necessary to find the optimal nondominant solutions in each dynamic environment. To solve this weakness, a novel method called robust pareto-optimal solution over time is proposed. It is in fact to replace the optimal pareto front at each time-varying moment with the series of robust pareto-optimal solutions. This means that each robust solution can fit for more than one time-varying moment. Two metrics, including the average survival time and average robust generational distance, are present to measure the robustness of the robust pareto solution set. Another contribution is to construct the algorithm framework searching for robust pareto-optimal solutions over time based on the survival time. Experimental results indicate that this definition is a more practical and time-saving method of addressing dynamic multiobjective optimization problems changing over time.


Symmetry ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 661
Author(s):  
Clemente Cobos-Sánchez ◽  
José Antonio Vilchez-Membrilla ◽  
Almudena Campos-Jiménez ◽  
Francisco Javier García-Pacheco

This manuscript determines the set of Pareto optimal solutions of certain multiobjective-optimization problems involving continuous linear operators defined on Banach spaces and Hilbert spaces. These multioptimization problems typically arise in engineering. In order to accomplish our goals, we first characterize, in an abstract setting, the set of Pareto optimal solutions of any multiobjective optimization problem. We then provide sufficient topological conditions to ensure the existence of Pareto optimal solutions. Next, we determine the Pareto optimal solutions of convex max–min problems involving continuous linear operators defined on Banach spaces. We prove that the set of Pareto optimal solutions of a convex max–min of form max∥T(x)∥, min∥x∥ coincides with the set of multiples of supporting vectors of T. Lastly, we apply this result to convex max–min problems in the Hilbert space setting, which also applies to convex max–min problems that arise in the design of truly optimal coils in engineering.


2019 ◽  
Vol 22 (3) ◽  
pp. 67-78
Author(s):  
A. V. Panteleev ◽  
A. U. Krychkov

The article suggests a modification for numerical fireworks method of the single-objective optimization for solving the problem of multiobjective optimization. The method is metaheuristic. It does not guarantee finding the exact solution, but can give a good approximate result. Multiobjective optimization problem is considered with numerical criteria of equal importance. A possible solution to the problem is a vector of real numbers. Each component of the vector of a possible solution belongs to a certain segment. The optimal solution of the problem is considered a Pareto optimal solution. Because the set of Pareto optimal solutions can be infinite; we consider a method for finding an approximation consisting of a finite number of Pareto optimal solutions. The modification is based on the procedure of non-dominated sorting. It is the main procedure for solutions search. Non-dominated sorting is the ranking of decisions based on the values of the numerical vector obtained using the criteria. Solutions are divided into disjoint subsets. The first subset is the Pareto optimal solutions, the second subset is the Pareto optimal solutions if the first subset is not taken into account, and the last subset is the Pareto optimal solutions if the rest subsets are not taken into account. After such a partition, the decision is made to create new solutions. The method was tested on well-known bi-objective optimization problems: ZDT2, LZ01. Structure of the location of Pareto optimal solutions differs for the problems. LZ01 have complex structure of Pareto optimal solutions. In conclusion, the question of future research and the issue of modifying the method for problems with general constraints are discussed.


Sign in / Sign up

Export Citation Format

Share Document