scholarly journals Writing's Shadow: Corticospinal Activation during Letter Observation

2012 ◽  
Vol 24 (5) ◽  
pp. 1138-1148 ◽  
Author(s):  
Masahiro Nakatsuka ◽  
Mohamed Nasreldin Thabit ◽  
Satoko Koganemaru ◽  
Ippei Nojima ◽  
Hidenao Fukuyama ◽  
...  

We can recognize handwritten letters despite the variability among writers. One possible strategy is exploiting the motor memory of orthography. By using TMS, we clarified the excitatory and inhibitory neural circuits of the motor corticospinal pathway that might be activated during the observation of handwritten letters. During experiments, participants looked at the handwritten or printed single letter that appeared in a random order. The excitability of the left and right primary motor cortex (M1) was evaluated by motor-evoked potentials elicited by single-pulse TMS. Short interval intracortical inhibition (SICI) of the left M1 was evaluated using paired-pulse TMS. F waves were measured for the right ulnar nerve. We found significant reduction of corticospinal excitability only for the right hand at 300–400 msec after each letter presentation without significant changes in SICI. This suppression is likely to be of supraspinal origin, because of no significant alteration in F-wave amplitudes. These findings suggest that the recognition of handwritten letters may include the implicit knowledge of “writing” in M1. The M1 activation associated with that process, which has been shown in previous neuroimaging studies, is likely to reflect the active suppression of the corticospinal excitability.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Yasuyuki Takamatsu ◽  
Satoko Koganemaru ◽  
Tatsunori Watanabe ◽  
Sumiya Shibata ◽  
Yoshihiro Yukawa ◽  
...  

AbstractTranscranial static magnetic stimulation (tSMS) has been focused as a new non-invasive brain stimulation, which can suppress the human cortical excitability just below the magnet. However, the non-regional effects of tSMS via brain network have been rarely studied so far. We investigated whether tSMS over the left primary motor cortex (M1) can facilitate the right M1 in healthy subjects, based on the hypothesis that the functional suppression of M1 can cause the paradoxical functional facilitation of the contralateral M1 via the reduction of interhemispheric inhibition (IHI) between the bilateral M1. This study was double-blind crossover trial. We measured the corticospinal excitability in both M1 and IHI from the left to right M1 by recording motor evoked potentials from first dorsal interosseous muscles using single-pulse and paired-pulse transcranial magnetic stimulation before and after the tSMS intervention for 30 min. We found that the corticospinal excitability of the left M1 decreased, while that of the right M1 increased after tSMS. Moreover, the evaluation of IHI revealed the reduced inhibition from the left to the right M1. Our findings provide new insights on the mechanistic understanding of neuromodulatory effects of tSMS in human.


2017 ◽  
Author(s):  
Eran Dayan ◽  
Virginia López-Alonso ◽  
Sook-Lei Liew ◽  
Leonardo G. Cohen

AbstractThe link between the local structure of the primary motor cortex and motor function has been well documented. However, motor function relies on a network of interconnected brain regions and the link between the structural properties characterizing these distributed brain networks and motor function remains poorly understood. Here, we examined whether distributed patterns of brain structure, extending beyond the primary motor cortex can help classify two forms of motor function: corticospinal excitability and intracortical inhibition. To this effect, we recorded high-resolution structural magnetic resonance imaging scans in 25 healthy volunteers. To measure corticospinal excitability and inhibition in the same volunteers we recorded motor evoked potentials (MEPs) elicited by single-pulse transcranial magnetic stimulation (TMS) and short-interval intracortical inhibition (SICI) in a separate session. Support vector machine (SVM) pattern classification was used to identify distributed multivoxel gray matter areas, which distinguished subjects who had lower and higher MEPs and SICIs. We found that MEP and SICI classification could be predicted based on a widely distributed, largely non-overlapping pattern of voxels in the frontal, parietal, temporal, occipital and cerebellar regions. Thus, structural properties distributed over the brain beyond the primary motor cortex relate to motor function.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Maryam Hassanzahraee ◽  
Michael A. Nitsche ◽  
Maryam Zoghi ◽  
Shapour Jaberzadeh

Abstract Transcranial direct current stimulation is applied to modulate activity, and excitability of the brain. Basically, LTP-like plasticity is induced when anodal tDCS (a-tDCS) is applied over the primary motor cortex. However, it has been shown that specific parameters of a-tDCS can induce a plasticity reversal. We aimed to systematically assess the intensity threshold for reversal of the direction of plasticity induced by a-tDCS, monitored by corticospinal excitability (CSE), and explored mechanisms regulating this reversal. Fifteen healthy participants received a-tDCS in pseudo-random order for 26 min with four intensities of 0.3, 0.7, 1, and 1.5 mA. To measure CSE changes, single-pulse TMS was applied over the left M1, and motor evoked potentials of a contralateral hand muscle were recorded prior to a-tDCS, immediately and 30-min post-intervention. Paired-pulse TMS was used to evaluate intracortical excitation and inhibition. CSE increased significantly following a-tDCS with an intensity of 0.7 mA; however, the expected effect decreased and even reversed at intensities of 1 and 1.5 mA. ICF was significantly increased while SICI and LICI decreased at 0.7 mA. On the other hand, a significant decrease of ICF, but SICI and LICI enhancement was observed at intensities of 1, and 1.5 mA. The present findings show an intensity threshold of ≥ 1 mA for 26 min a-tDCS to reverse LTP- into LTD-like plasticity. It is suggested that increasing stimulation intensity, with constant stimulation duration, activates counter-regulatory mechanisms to prevent excessive brain excitation. Therefore, stimulation intensity and plasticity induced by a-tDCS might non-linearly correlate in scenarios with prolonged stimulation duration.


2006 ◽  
Vol 95 (6) ◽  
pp. 3371-3383 ◽  
Author(s):  
James P. Coxon ◽  
Cathy M. Stinear ◽  
Winston D. Byblow

Volitional inhibition is the voluntary prevention of a prepared movement. Here we ask whether primary motor cortex (M1) is a site of convergence of cortical activity associated with movement preparation and volitional inhibition. Volitional inhibition was studied by presenting a stop signal before execution of an anticipated response that requires a key lift to intercept a revolving dial. Motor evoked potentials (MEPs) were elicited in intrinsic hand muscles by transcranial magnetic stimulation (TMS) to assess corticomotor excitability and short interval intracortical inhibition (sICI) during task performance. The closer the stop cue was presented to the anticipated response, the harder it was for subjects to inhibit their response. Corticomotor pathway excitability was temporally modulated during volitional inhibition. Using subthreshold TMS, corticomotor excitability was reduced for Stop trials relative to Go trials from 140 ms after the cue. sICI was significantly greater for Stop trials compared with Go trials at a time that preceded the onset of muscle activity associated with the anticipated response. These results provide evidence that volitional inhibition is exerted at a cortical level and that inhibitory networks within M1 contribute to volitional inhibition of prepared action.


2014 ◽  
Vol 111 (12) ◽  
pp. 2560-2569 ◽  
Author(s):  
Pranav Parikh ◽  
Marco Davare ◽  
Patrick McGurrin ◽  
Marco Santello

Control of digit forces for grasping relies on sensorimotor memory gained from prior experience with the same or similar objects and on online sensory feedback. However, little is known about neural mechanisms underlying digit force planning. We addressed this question by quantifying the temporal evolution of corticospinal excitability (CSE) using single-pulse transcranial magnetic stimulation (TMS) during two reach-to-grasp tasks. These tasks differed in terms of the magnitude of force exerted on the same points on the object to isolate digit force planning from reach and grasp planning. We also addressed the role of intracortical circuitry within primary motor cortex (M1) by quantifying the balance between short intracortical inhibition and facilitation using paired-pulse TMS on the same tasks. Eighteen right-handed subjects were visually cued to plan digit placement at predetermined locations on the object and subsequently to exert either negligible force (“low-force” task, LF) or 10% of their maximum pinch force (“high-force” task, HF) on the object. We found that the HF task elicited significantly smaller CSE than the LF task, but only when the TMS pulse coincided with the signal to initiate the reach. This force planning-related CSE modulation was specific to the muscles involved in the performance of both tasks. Interestingly, digit force planning did not result in modulation of M1 intracortical inhibitory and facilitatory circuitry. Our findings suggest that planning of digit forces reflected by CSE modulation starts well before object contact and appears to be driven by inputs from frontoparietal areas other than M1.


PLoS ONE ◽  
2021 ◽  
Vol 16 (11) ◽  
pp. e0259931
Author(s):  
Akira Yamashita ◽  
Takenobu Murakami ◽  
Noriaki Hattori ◽  
Ichiro Miyai ◽  
Yoshikazu Ugawa

Paired associative corticospinal-motoneuronal stimulation (PCMS) induces plasticity at synapses between corticospinal tracts (CSTs) and spinal motoneurons (SMs). We investigated the effects of peripheral nerve electrical stimulation (PNS) intensity on PCMS-induced plasticity. PCMS consisted of 180 paired stimuli of transcranial magnetic stimulation (TMS) over the left primary motor cortex with PNS on the right ulnar nerve at the wrist. We compared effects induced by different PNS intensities: supramaximal, twice and three times sensory threshold intensities. For evaluating efficacy of the synapse between CSTs and SMs, single-pulse TMS was delivered at cervicomedullary junction level, and cervicomedullary motor-evoked potentials (CMEPs) were recorded from the right first-dorsal interosseous muscle before and after PCMS. PCMS with the supramaximal PNS intensity increased CMEP amplitude. The facilitatory effect of PCMS with the supramaximal PNS was larger than those of PCMS with weaker PNS intensities. Sham TMS with the supramaximal PNS showed no CMEP changes after the intervention. PNS intensity of PCMS influences the magnitude of synaptic plasticity induction between the CSTs and SMs at the spinal level, and the supramaximal intensity is the best for induction of long-term potentiation-like effects. The PNS intensity may influence the number of activated SMs by axonal backpropagating pulses with PNS which must overlap with descending volleys induced by TMS.


2011 ◽  
Vol 105 (4) ◽  
pp. 1594-1602 ◽  
Author(s):  
Demetris S. Soteropoulos ◽  
Monica A. Perez

Many bilateral motor tasks engage simultaneous activation of distal and proximal arm muscles, but little is known about their physiological interactions. Here, we used transcranial magnetic stimulation to examine motor-evoked potentials (MEPs), interhemispheric inhibition at a conditioning-test interval of 10 (IHI10) and 40 ms (IHI40), and short-interval intracortical inhibition (SICI) in the left first dorsal interosseous (FDI) muscle during isometric index finger abduction. The right side remained at rest or performed isometric voluntary contraction with the FDI, biceps or triceps brachii, or the tibialis anterior. Left FDI MEPs were suppressed to a similar extent during contraction of the right FDI and biceps and triceps brachii but remained unchanged during contraction of the right tibialis anterior. IHI10 and IHI40 were decreased during contraction of the right biceps and triceps brachii compared with contraction of the right FDI. SICI was increased during activation of the right biceps and triceps brachii and decreased during activation of the right FDI. The present results indicate that an isometric voluntary contraction with either a distal or a proximal arm muscle, but not a foot dorsiflexor, decreases corticospinal output in a contralateral active finger muscle. Transcallosal inhibitory effects were strong during bilateral activation of distal hand muscles and weak during simultaneous activation of a distal and a proximal arm muscle, whereas GABAergic intracortical activity was modulated in the opposite manner. These findings suggest that in intact humans crossed interactions at the level of the motor cortex involved different physiological mechanisms when bilateral distal hand muscles are active and when a distal and a proximal arm muscle are simultaneously active.


2018 ◽  
Vol 119 (4) ◽  
pp. 1266-1272 ◽  
Author(s):  
Vincent Cabibel ◽  
Makii Muthalib ◽  
Wei-Peng Teo ◽  
Stephane Perrey

The crossed-facilitation (CF) effect refers to when motor-evoked potentials (MEPs) evoked in the relaxed muscles of one arm are facilitated by contraction of the opposite arm. The aim of this study was to determine whether high-definition transcranial direct-current stimulation (HD-tDCS) applied to the right primary motor cortex (M1) controlling the left contracting arm [50% maximum voluntary isometric contraction (MVIC)] would further facilitate CF toward the relaxed right arm. Seventeen healthy right-handed subjects participated in an anodal and cathodal or sham HD-tDCS session of the right M1 (2 mA for 20 min) separated by at least 48 h. Single-pulse transcranial magnetic stimulation (TMS) was used to elicit MEPs and cortical silent periods (CSPs) from the left M1 at baseline and 10 min into and after right M1 HD-tDCS. At baseline, compared with resting, CF (i.e., right arm resting, left arm 50% MVIC) increased left M1 MEP amplitudes (+97%) and decreased CSPs (−11%). The main novel finding was that right M1 HD-tDCS further increased left M1 excitability (+28.3%) and inhibition (+21%) from baseline levels during CF of the left M1, with no difference between anodal and cathodal HD-tDCS sessions. No modulation of CSP or MEP was observed during sham HD-tDCS sessions. Our findings suggest that CF of the left M1 combined with right M1 anodal or cathodal HD-tDCS further facilitated interhemispheric interactions during CF from the right M1 (contracting left arm) toward the left M1 (relaxed right arm), with effects on both excitatory and inhibitory processing. NEW & NOTEWORTHY This study shows modulation of the nonstimulated left M1 by right M1 HD-tDCS combined with crossed facilitation, which was probably achieved through modulation of interhemispheric interactions.


2013 ◽  
Vol 110 (5) ◽  
pp. 1158-1166 ◽  
Author(s):  
Mitsuaki Takemi ◽  
Yoshihisa Masakado ◽  
Meigen Liu ◽  
Junichi Ushiba

There is increasing interest in electroencephalogram (EEG)-based brain-computer interface (BCI) as a tool for rehabilitation of upper limb motor functions in hemiplegic stroke patients. This type of BCI often exploits mu and beta oscillations in EEG recorded over the sensorimotor areas, and their event-related desynchronization (ERD) following motor imagery is believed to represent increased sensorimotor cortex excitability. However, it remains unclear whether the sensorimotor cortex excitability is actually correlated with ERD. Thus we assessed the association of ERD with primary motor cortex (M1) excitability during motor imagery of right wrist movement. M1 excitability was tested by motor evoked potentials (MEPs), short-interval intracortical inhibition (SICI), and intracortical facilitation (ICF) with transcranial magnetic stimulation (TMS). Twenty healthy participants were recruited. The participants performed 7 s of rest followed by 5 s of motor imagery and received online visual feedback of the ERD magnitude of the contralateral hand M1 while performing the motor imagery task. TMS was applied to the right hand M1 when ERD exceeded predetermined thresholds during motor imagery. MEP amplitudes, SICI, and ICF were recorded from the agonist muscle of the imagined hand movement. Results showed that the large ERD during wrist motor imagery was associated with significantly increased MEP amplitudes and reduced SICI but no significant changes in ICF. Thus ERD magnitude during wrist motor imagery represents M1 excitability. This study provides electrophysiological evidence that a motor imagery task involving ERD may induce changes in corticospinal excitability similar to changes accompanying actual movements.


2010 ◽  
Vol 104 (6) ◽  
pp. 2922-2931 ◽  
Author(s):  
Juliette A. Yedimenko ◽  
Monica A. Perez

The activity in the primary motor cortex (M1) reflects the direction of movements, but little is known about physiological changes in the M1 during generation of bilateral isometric forces in different directions. Here, we used transcranial magnetic stimulation to examine motor evoked potentials (MEPs), short-interval intracortical inhibition (SICI), and interhemispheric inhibition (IHI) in the left first dorsal interosseous (FDI) during isometric index finger abduction while the right index finger remained at rest or performed isometric forces in different directions (abduction or adduction) and in different postures (prone and supine). Left FDI MEPs were suppressed during bilateral compared with unilateral forces, with a stronger suppression when the right index finger force was exerted in the adduction direction regardless of hand posture. IHI targeting the left FDI increased during bilateral compared with unilateral forces and this increase was stronger during right index finger adduction despite the posture of the right hand. SICI decreased to a similar extent during both bilateral forces in both hand postures. Thus generation of index finger isometric forces away from the body midline (adduction direction), regardless of the muscle engaged in the task, down-regulates corticospinal output in the contralateral active hand to a greater extent than forces exerted toward the body midline (abduction direction). Transcallosal inhibition, but not GABAergic intracortical circuits, was modulated by the direction of the force. These findings suggest that during generation of bimanual isometric forces the M1 is driven by “extrinsic” parameters related to the hand action.


Sign in / Sign up

Export Citation Format

Share Document