Novel Cognitive Functions Arise at the Convergence of Macroscale Gradients
Abstract Functions in higher-order brain regions are the source of extensive debate. Although past trends have been to describe the brain—especially posterior cortical areas—in terms of a set of functional modules, a new emerging paradigm focuses on the integration of proximal functions. In this review, we synthesize emerging evidence that a variety of novel functions in the higher-order brain regions are due to convergence: convergence of macroscale gradients brings feature-rich representations into close proximity, presenting an opportunity for novel functions to arise. Using the TPJ as an example, we demonstrate that convergence is enabled via three properties of the brain: (1) hierarchical organization, (2) abstraction, and (3) equidistance. As gradients travel from primary sensory cortices to higher-order brain regions, information becomes abstracted and hierarchical, and eventually, gradients meet at a point maximally and equally distant from their sensory origins. This convergence, which produces multifaceted combinations, such as mentalizing another person's thought or projecting into a future space, parallels evolutionary and developmental characteristics in such regions, resulting in new cognitive and affective faculties.