In this short article we present our manual annotation of the eye movement events in a subset of the large-scale eye tracking data set Hollywood2. Our labels include fixations, saccades, and smooth pursuits, as well as a noise event type (the latter representing either blinks, loss of tracking, or physically implausible signals). In order to achieve more consistent annotations, the gaze samples were labelled by a novice rater based on rudimentary algorithmic suggestions, and subsequently corrected by an expert rater. Overall, we annotated eye movement events in the recordings corresponding to 50 randomly selected test set clips and 6 training set clips from Hollywood2, which were viewed by 16 observers and amount to a total of approximately 130 minutes of gaze data. In these labels, 62.4% of the samples were attributed to fixations, 9.1% – to saccades, and, notably, 24.2% – to pursuit (the remainder marked as noise). After evaluation of 15 published eye movement classification algorithms on our newly collected annotated data set, we found that the most recent algorithms perform very well on average, and even reach human-level labelling quality for fixations and saccades, but all have a much larger room for improvement when it comes to smooth pursuit classification. The data set is made available at https://gin.g- node.org/ioannis.agtzidis/hollywood2_em.