Climate Bubbles: Games to Monitor Urban Climate

Leonardo ◽  
2011 ◽  
Vol 44 (1) ◽  
pp. 64-65
Author(s):  
Drew Hemment ◽  
Carlo Buontempo ◽  
Alfie Dennen

Climate Bubbles was a playful, participatory mass observation project on local climate. Bubble blowing games were devised to enable people across the city of Manchester to test air flow circulation and, by sharing the results online, enabled the Met Office to create a snapshot of the effect the Urban Heat Island has on wind.

2013 ◽  
Vol 2013 ◽  
pp. 1-11 ◽  
Author(s):  
António Lopes ◽  
Elis Alves ◽  
Maria João Alcoforado ◽  
Raquel Machete

Urban growth implies significant modifications in the urban climate. To understand the influence of the city of Lisbon on the urban boundary layer, a mesoscale meteorological network was installed in 2004. The main goals of the present study are to update the results of the research published in 2007 and to bring more precise information about the relationship between the Urban Heat Island (UHI) and the regional and local wind systems. The highest frequencies of the UHI were found in the city centre (Restauradores). In the green park of Monsanto, the highest frequency occurred between −2 and 0°C. During the summer, the effect of the breezes was observed in Belém, lowering the temperature. The “strong” UHI (intensity >4°C) occurred more often during the summer, with median values of 2°C by night and 1.8°C by day. The highest frequencies of UHI occurred for winds between 2 and 6 m/s and were not associated with atmospheric calm, as pointed out in the literature. Winds above 8 m/s inhibit the occurrence of strong UHI in Lisbon. Summer nighttime strong UHI should be further investigated, due to the heat stress consequences on the population and probable increase of energy consumption.


2020 ◽  
Author(s):  
Ines Langer ◽  
Alexander Pasternack ◽  
Uwe Ulbrich

<p>Urban areas show higher nocturnal temperature comparing to rural areas, which is denoted by urban heat island. This effect can intensify the impact of global warming in urban areas especially during heat waves, that leads to higher energy demand for cooling the building and higher thermal stress for residents.  </p><p>The aim of this study is to identify the Urban Heat Island (UHI) effect during the heat spell 2018 and 2019 in order to calculated human thermal comfort for Berlin. Berlin, the capital city of Germany covers an area of 892km<sup>2</sup> and its population is growing, therefore more residential areas will be planned in future through higher building. The methodology of this research is to divide Berlin into Local Climate Zones (LCZ's) regarding the concept of Stewart & Oke (2012). Then to evaluate the accuracy of this concept using 30 microclimate stations. Estimating the magnitude of urban heat island and its seasonal changes in combination with human thermal perception in different LCZ during summer time is another objective of this research. </p><p>Ten LCZ's for Berlin were selected, as class 1 (compact high rise), class 3 (compact low rise), class 7 (lightweight low-rise), class C (bush, scrub), class E (bare rock or paved) and class F (bare soil or sand) don't exist in Berlin. Class A (dense trees) is with a fraction of 18.6% in a good agreement with the percentage of dense trees reported from the city administration of Berlin (18.4%), class G (water) has a coverage of 5.1% through our classification instead of 6.7% reported by the city administration. In summary, the LCZ 1-10 cover 59.3% (more than half) of the city area.</p><p>Regarding temperature measurements, which represent a hot summer day with calm wind and clear sky the difference of Local Climate Zones will be calculated and the temperature variability in every LCZ's regarding sky view factor values show the hot spot of the city.</p><p>The vulnerability of LCZ's to heat stress will be ranked and discussed regarding ventilation and other factors.</p><p> </p><p>Literature</p><p>Matzarakis, A. Mayer, H., Iziomon, M. (1999) Applications of a universal thermal index: Physiological equivalent temperature: Intern. J. of Biomet 43 (2), 76-84.</p><p>Stewart, I.D., Oke, T.R. (2012) Local climate zones for urban temperature studies. Bull. Amer. Meteor. Soc. 93 1879-1900. DOI: 10.1175/BAMS-D-11-00019.1.</p><p> </p>


2018 ◽  
Vol 7 (6) ◽  
pp. 345
Author(s):  
Amanda Mayara Paulino Da Silva

Abstrat Urban growth has generated several socio-environmental problems and has altered the quality of life of people living in these environments. Due to the disorderly growth of cities and the various forms of urban land use and occupation, changes in the thermal field of these areas have occurred and caused the formation of urban heat islands and thermal discomfort in urban environments. Thus, the need to understand the formation of heat islands in these areas and the study of their causes and consequences grows. Given this context, the present work intends to study the urban climate of the city of Bayeux / PB, specifically the urban thermal field, and the formation of heat islands. For the accomplishment of the research, initially a bibliographical survey of the subject in question was made. Subsequently experimental points of meteorological data collection (temperature and relative air humidity) were defined in the metropolitan area of the city of João Pessoa, specifically in the municipality of Bayeux / PB. These points were defined based on the different types of land use and cover in the study area. The following experimental points were defined: a point in the center of the city of Bayeux / PB, another point on the banks of the BR230 direction Bayeux, and a reference point in a remnant of Atlantic forest. To obtain the urban heat island the reference point was used as a parameter of the climatic conditions of a natural environment. The data of temperature and relative humidity were collected through thermometers (HOBO U-10), which were placed on steel tripods (1.5 meters high) and monitored at uninterrupted intervals of 1 and 1 hour during the dry period and rainy region. The analysis of the data points to the formation of urban heat islands in the two periods evaluated in the city of Bayeux / PB, being the center of the city, the most critical area with the most intense heat islands. The vegetative cover played a predominant role in the climatic mitigation of the experimental samples as well as the presence of precipitation. The areas with impermeable soil cover presented the largest heat islands and contributed to the thermal discomfort of the study area. Keywords: Urban Climate, Thermodynamic Field, Urban Heat Island.


Author(s):  
Hildreth Jadira Villamil-Almeida ◽  
Kevin Andrés Blanco-Mantilla ◽  
Oscar Yazit Salah-García ◽  
Carlos Eduardo García Sánchez

One of the meteorological effects in cities is the increase in local temperature, which is known as urban heat island (UHI). The objective of this study was to detect and quantify the possible UHI in the city of Bucaramanga, Colombia. For this purpose, a real-time temperature measurement network was installed, composed of seven nodes, used to obtain temperature values every minute. Six of the nodes were located in different positions in the city, and the remaining one was used to give the reference measurement. The data collected were processed for elimination of outliers, management of missing data and noise filtering. Analysis of the data allowed detecting differences in the diurnal and nocturnal UHI intensity trends. It was concluded that the UHI intensity during the day varies depending on the Local Climate Zone that represents the location, while the UHI intensity value at night is quite uniform across the city, with a mean value of 1.0 °C. It was also possible to conclude that the magnitude of the daytime UHI is lower in the dry season.


PLoS ONE ◽  
2021 ◽  
Vol 16 (7) ◽  
pp. e0254371
Author(s):  
Xueqin Li ◽  
Lindsay C. Stringer ◽  
Sarah Chapman ◽  
Martin Dallimer

Due to the combined effects of urban growth and climate change, rapid urbanisation is particularly challenging in African cities. Areas that will house a large proportion of the urban population in the future coincide with where natural hazards are expected to occur, and where hazard risk management institutions, knowledge, and capacity are often lacking. One of the challenges posed by rapid urbanisation is the Urban Heat Island (UHI) effect, whereby urban areas are warmer than the surrounding rural areas. This study investigates urbanisation patterns and alterations in surface UHI (SUHI) intensity for the Kampala urban cluster, Uganda. Analyses show that between 1995 and 2017, Kampala underwent extensive changes to its urban built-up area. From the centre of the city to adjoining non-built up areas in all directions, the urban land cover increased from 12,133 ha in 1995 to 25,389 ha in 2016. The area of SUHI intensity in Kampala expanded significantly over the 15-year period of study, expanding from 22,910 ha in 2003 to 27,900 ha in 2016, while the annual daytime SUHI of 2.2°C in 2003 had decreased to 1.9°C by 2017. Although SUHI intensity decreased in some parts of the city, elsewhere it increased, suggesting that urbanisation does not always lead to a deterioration of environmental conditions. We postulate that urban development may therefore not necessarily create an undesirable impact on local climate if it is properly managed. Rapidly growing cities in Africa and elsewhere should ensure that the dynamics of their development are directed towards mitigating potentially harmful environmental impacts, such as UHI effect through careful planning that considers both bluespaces and greenspaces.


Energies ◽  
2021 ◽  
Vol 14 (16) ◽  
pp. 5208
Author(s):  
Kit Benjamin ◽  
Zhiwen Luo ◽  
Xiaoxue Wang

Urban heat island (UHI) effects significantly impact building energy. Traditional UHI investigation methods are often incapable of providing the high spatial density of observations required to distinguish small-scale temperature differences in the UHI. Crowdsourcing offers a solution. Building cooling/heating load in 2018 has been estimated in London, UK, using crowdsourced data from over 1300 Netatmo personal weather stations. The local climate zone (LCZ) scheme was used to classify the different urban environments of London (UK). Inter-LCZ temperature differences are found to be generally consistent with LCZ temperature definitions. Analysis of cooling degree hours in July shows LCZ 2 (the densest urban LCZ in London) had the highest cooling demand, with a total of 1550 cooling degree hours. The suburban related LCZs 5 and 6 and rural LCZs B and D all had about 80% of the demand of LCZ 2. In December, the rural LCZs A, B and D had the greatest heating demand, with all recording around 5750 heating degree hours. Urban LCZs 2, 5 and 6 had 91%, 86% and 95% of the heating demand of LCZ D, respectively. This study has highlighted both advantages and issues with using crowdsourced data for urban climate and building energy research.


2020 ◽  
Vol 12 (22) ◽  
pp. 9652
Author(s):  
Pavel Ichim ◽  
Lucian Sfîcă

This study was carried out in order to outline the human bioclimatic stress/comfort conditions within the area of Iași city, Romania. The meteorological data were obtained over a 7-year period (December 2012–November 2019) from an observation network relying on 8 fixed observation points located in selected spots, relevant for the urban climate conditions in the region. The results demonstrate firstly that throughout the entire analyzed period, using the thermo-hygrometric index (THI), “very cold” conditions characterize 4% of the entire year in the inner parts of the city and 6% in the rural area, while the “hot” THI conditions vary from 18% in the middle of the urban heat island to 15% in the rural area. Overall, the rural areas are generally more comfortable than the inner city, especially during summer, when the urban heat island (UHI) core is starting to develop from the evening and persists during the night. On the contrary, the UHI renders the inner city more comfortable than the rural surroundings from October to April. Similar bioclimatic conditions are also presented in detail for the summer by the relative strain index (RSI), which exceeds the stress threshold value mostly during heat waves, when a significant contrast between urban and rural areas is felt. In brief, it has been determined that the most suitable area for human comfort in Iași city is inside the urban area during the winter and in the rural areas during the summer.


2021 ◽  
Vol 2 ◽  
pp. 1-11
Author(s):  
Monika Kopecká ◽  
Daniel Szatmári ◽  
Juraj Holec ◽  
Ján Feranec

Abstract. Cities are generally expected to experience higher temperatures than surrounding rural areas due to the Urban Heat Island (UHI) effect. The aim of this paper is to document identification and delimitation of land cover/land use (LC/LU) classes based on Urban Atlas data in three cities in Slovakia: the capital Bratislava and two regional centres, Trnava and Žilina, in the years 1998–2016 and their effect on the temperature change. The concept of Local Climate Zones (replaced by LC/LU classes in this study) was used as an input for the UHI modelling by application of the Mikroskaliges Urbanes KLIma MOdell (MUKLIMO). The model MUKLIMO was validated by data taken in five stations in Bratislava, two in Trnava, and one in Žilina, while a good rate of agreement between the modelled and measured data was statistically proved. A single representative day (August 22, 2018) was chosen for which UHI was modelled with three inputs of LC/LU classes: situation in 1998, 2007, and 2016 to assess the effect of change of LC/LU classes on the distribution of temperatures. The spatial manifestation of UHI was assessed in the frame of LC/LU classes for 2016 at 21:00 of Central European Summer Time (CEST). The results indicate that UHI intensity trends are spatially correlated with LC/LU classes and their change pattern. Results of Bratislava show, regarding the size of the city and relief dissection, greater variability than smaller Trnava situated in flat terrain and Žilina situated in the river valley surrounded by the mountain ranges.


2020 ◽  
Author(s):  
Mikhail Varentsov ◽  
Timofey Samsonov ◽  
Pavel Konstantinov ◽  
Pavel Kargashin ◽  
Daniel Fenner ◽  
...  

<p>The presented study is devoted to the investigation of the spatial patterns of the urban-induced air temperature anomaly, known as the urban heat island (UHI) effect, based on the example of Moscow megacity. The numerous previous studies have already shown that Moscow exhibits urban-induced climatic effects (Varentsov e al., 2018) and could serve as a good test-bed for urban climate studies. In the presented study, we have further analyzed the UHI using high-quality observations from the official meteorological networks in Moscow region as well as the uncertified crowdsourcing observations from Netatmo network. The official meteorological networks include more than 70 observational sites in the city and surroundings, while the Netatmo network additionally provides the data from more than 1500 citizen weather stations (CWSs) in Moscow region. Previous studies have shown that CWS observations could be used for urban climate studies after application of the special quality control and filtering routines (Meier et al., 2017).</p><p>The analysis performed for a number of summer and winter seasons has revealed the seasonal variations of the UHI spatial patterns. In order to investigate the driving factors of the observed spatial heterogeneity of the air temperature within the city, we have analyzed its linkages with different qualitative and quantitative parameters of the urban environment, including the Local Climate Zone (LCZ) type, the impervious area fraction, building density, vegetation area fraction, etc. These parameters were obtained using the Landsat and Sentinel satellite images, Copernicus Global Land Cover data and OpenStreetMap data. We have shown that the UHI spatial patterns are shaped both by local and non-local driving factors. The factors such as LCZ type represent the local features of the urban environment, while the non-local drivers represent the influence of remote parts of the megacity, transformed by the atmospheric diffusion and advection. The non-local effects are reflected e.g. in the dependence between the UHI intensity and the distance from the city center; in the differences between similar LCZs, located in the different parts of the city; in the heat advection to the leeward side of the city. The findings of the study clearly illustrate the importance of taking the non-local effects into consideration in urban planning applications, biometeorological assessments and when applying the LCZ approach for big cities.</p><p><strong>Acknowledges:</strong> The processing and analysis of the official and crowdsourcing observations were supported by Russian Foundation for Basic Research (project no. 19-35-70009). The analysis of the impervious surface area fraction data was supported by Russian Foundation for Basic Research (project no. 18-35-20052). The analysis of the impacts of urban vegetation on the urban heat island was supported by Russian Science Foundation (project no. 19-77-30012).</p><p><strong>References: </strong></p><p>Meier F., Fenner D., Grassmann T., Otto M., & Scherer D. (2017). Crowdsourcing air temperature from citizen weather stations for urban climate research. Urban Climate, 19, 170–191.</p><p>Varentsov M., Wouters H., Platonov V., & Konstantinov P. (2018). Megacity-Induced Mesoclimatic Effects in the Lower Atmosphere: A Modeling Study for Multiple Summers over Moscow, Russia. Atmosphere, 9(2), 50.</p>


Sign in / Sign up

Export Citation Format

Share Document