The Teacher of Dance

2021 ◽  
Vol 9 (2) ◽  
pp. 285-319
Author(s):  
Clifford A. Robinson

Abstract The De musica of Aristides Quintilianus, an author and music theorist unknown apart from this treatise, presents several tantalizing claims about the relationship between dance and the three sciences of mousikē: i.e., harmonics, metrics, and, most importantly, rhythmics. Elliptical as his remarks on dance may be, if they are taken together with his treatment of the musical phenomena as essentially governed by systēmata, both a technical discourse around dance can be elicited from the evidence as well as the philosophical and aesthetic reasons why such a discourse was so modestly developed in comparison with the three sciences attending to musical phenomena. I conclude that the theorist considers the dancing body to be only minimally conformable to the systēmata imposed on bodies by the Platonic demiurge’s art, almost as a leimma unassimilable to the perfections of musical order, and yet somehow orderly enough to be treated according to their proportional order.

Author(s):  
Oscar João Abdounur

This article covers questions of how the relationship between mathematics and theoretical music throughout western history shaped modern comprehension of critical notions such as “ratio” and “proportion”. In order to do that, it will be consider a procedure taken by Erasmus of Höritz, a Bohemian mathematician and music theorist who emerged in the early 16th century as a German humanist very articulate with musical matters. In order to divide the tone, Erasmus preferred to use a numerical method to approach the geometrical mean, although he did not recognize his procedure itself as an approximation of the true real number value of the geometric mean. The Early Modern Period saw the growing use of geometry as an instrument for solving structural problems in theoretical music, a change not independently from those occurred in the conception of ratio/number in the context of theoretical music. In the context of recovery of interest in Greek sources, Erasmus communicated to musical readers an important fruit of such a revival and was likely the first in the Renaissance to apply explicitly Euclidean geometry to solve problems in theoretical music. Although Erasmus also considered the tradition of De institutione musica of Boethius, he was based strongly on Euclid’s The Elements, using geometry in his De musica in different ways in order to solve musical problems. It is this comprehensive geometrical work rather than the summary arithmetical and musical books of Boethius that serves Erasmus as his starting-point. However, Erasmus proposed a proportional numerical division of the whole tone interval sounding between strings with length ratio of 9:8, since it was a primary arithmetical problem. This presentation aims at showing the educational potentiality of the implications of such a procedure of Erasmus on the transformation of conception of ratio and on the emergence of the idea of modern number in theoretical music contexts. Under a broader perspective, it aims at show the implications on education of a historical/epistemological and interdisciplinary appraisal of theoretical music and mathematics.


2015 ◽  
Vol 24 (2) ◽  
pp. 113-127
Author(s):  
MIRIAM WENDLING

ABSTRACTThe bindings of a large number of manuscripts formerly held in the library of the Benedictine monastery of St Michelsberg in Bamberg preserve fragments of medieval chantbooks documenting a culture in which practical singing and music theory were closely intertwined. These remnants, the work of generations of scribes, reveal a sustained concern for correctness ranging from the use of pitch-clarifying neume notations, to the use of letters, to the recording of melodies along lines prescribed in theoretical works. The influence the music theorist Hermann of Reichenau on St Michelsberg's own theorist, Frutolf, raises two questions. First, what is the nature of the relationship between practical chant and music theory books at St Michelsberg? Second, how was Hermann's notation used at the monastery?


1967 ◽  
Vol 31 ◽  
pp. 239-251 ◽  
Author(s):  
F. J. Kerr

A review is given of information on the galactic-centre region obtained from recent observations of the 21-cm line from neutral hydrogen, the 18-cm group of OH lines, a hydrogen recombination line at 6 cm wavelength, and the continuum emission from ionized hydrogen.Both inward and outward motions are important in this region, in addition to rotation. Several types of observation indicate the presence of material in features inclined to the galactic plane. The relationship between the H and OH concentrations is not yet clear, but a rough picture of the central region can be proposed.


Paleobiology ◽  
1980 ◽  
Vol 6 (02) ◽  
pp. 146-160 ◽  
Author(s):  
William A. Oliver

The Mesozoic-Cenozoic coral Order Scleractinia has been suggested to have originated or evolved (1) by direct descent from the Paleozoic Order Rugosa or (2) by the development of a skeleton in members of one of the anemone groups that probably have existed throughout Phanerozoic time. In spite of much work on the subject, advocates of the direct descent hypothesis have failed to find convincing evidence of this relationship. Critical points are:(1) Rugosan septal insertion is serial; Scleractinian insertion is cyclic; no intermediate stages have been demonstrated. Apparent intermediates are Scleractinia having bilateral cyclic insertion or teratological Rugosa.(2) There is convincing evidence that the skeletons of many Rugosa were calcitic and none are known to be or to have been aragonitic. In contrast, the skeletons of all living Scleractinia are aragonitic and there is evidence that fossil Scleractinia were aragonitic also. The mineralogic difference is almost certainly due to intrinsic biologic factors.(3) No early Triassic corals of either group are known. This fact is not compelling (by itself) but is important in connection with points 1 and 2, because, given direct descent, both changes took place during this only stage in the history of the two groups in which there are no known corals.


2020 ◽  
Vol 43 ◽  
Author(s):  
Thomas Parr

Abstract This commentary focuses upon the relationship between two themes in the target article: the ways in which a Markov blanket may be defined and the role of precision and salience in mediating the interactions between what is internal and external to a system. These each rest upon the different perspectives we might take while “choosing” a Markov blanket.


2019 ◽  
Vol 42 ◽  
Author(s):  
Paul Benjamin Badcock ◽  
Axel Constant ◽  
Maxwell James Désormeau Ramstead

Abstract Cognitive Gadgets offers a new, convincing perspective on the origins of our distinctive cognitive faculties, coupled with a clear, innovative research program. Although we broadly endorse Heyes’ ideas, we raise some concerns about her characterisation of evolutionary psychology and the relationship between biology and culture, before discussing the potential fruits of examining cognitive gadgets through the lens of active inference.


Author(s):  
Robert M. Glaeser

It is well known that a large flux of electrons must pass through a specimen in order to obtain a high resolution image while a smaller particle flux is satisfactory for a low resolution image. The minimum particle flux that is required depends upon the contrast in the image and the signal-to-noise (S/N) ratio at which the data are considered acceptable. For a given S/N associated with statistical fluxtuations, the relationship between contrast and “counting statistics” is s131_eqn1, where C = contrast; r2 is the area of a picture element corresponding to the resolution, r; N is the number of electrons incident per unit area of the specimen; f is the fraction of electrons that contribute to formation of the image, relative to the total number of electrons incident upon the object.


Author(s):  
D. F. Blake ◽  
L. F. Allard ◽  
D. R. Peacor

Echinodermata is a phylum of marine invertebrates which has been extant since Cambrian time (c.a. 500 m.y. before the present). Modern examples of echinoderms include sea urchins, sea stars, and sea lilies (crinoids). The endoskeletons of echinoderms are composed of plates or ossicles (Fig. 1) which are with few exceptions, porous, single crystals of high-magnesian calcite. Despite their single crystal nature, fracture surfaces do not exhibit the near-perfect {10.4} cleavage characteristic of inorganic calcite. This paradoxical mix of biogenic and inorganic features has prompted much recent work on echinoderm skeletal crystallography. Furthermore, fossil echinoderm hard parts comprise a volumetrically significant portion of some marine limestones sequences. The ultrastructural and microchemical characterization of modern skeletal material should lend insight into: 1). The nature of the biogenic processes involved, for example, the relationship of Mg heterogeneity to morphological and structural features in modern echinoderm material, and 2). The nature of the diagenetic changes undergone by their ancient, fossilized counterparts. In this study, high resolution TEM (HRTEM), high voltage TEM (HVTEM), and STEM microanalysis are used to characterize tha ultrastructural and microchemical composition of skeletal elements of the modern crinoid Neocrinus blakei.


Author(s):  
M.J. Murphy ◽  
R.R. Price ◽  
J.C. Sloman

The in vitro human tumor cloning assay originally described by Salmon and Hamburger has been applied recently to the investigation of differential anti-tumor drug sensitivities over a broad range of human neoplasms. A major problem in the acceptance of this technique has been the question of the relationship between the cultured cells and the original patient tumor, i.e., whether the colonies that develop derive from the neoplasm or from some other cell type within the initial cell population. A study of the ultrastructural morphology of the cultured cells vs. patient tumor has therefore been undertaken to resolve this question. Direct correlation was assured by division of a common tumor mass at surgical resection, one biopsy being fixed for TEM studies, the second being rapidly transported to the laboratory for culture.


Author(s):  
T. G. Naymik

Three techniques were incorporated for drying clay-rich specimens: air-drying, freeze-drying and critical point drying. In air-drying, the specimens were set out for several days to dry or were placed in an oven (80°F) for several hours. The freeze-dried specimens were frozen by immersion in liquid nitrogen or in isopentane at near liquid nitrogen temperature and then were immediately placed in the freeze-dry vacuum chamber. The critical point specimens were molded in agar immediately after sampling. When the agar had set up the dehydration series, water-alcohol-amyl acetate-CO2 was carried out. The objectives were to compare the fabric plasmas (clays and precipitates), fabricskeletons (quartz grains) and the relationship between them for each drying technique. The three drying methods are not only applicable to the study of treated soils, but can be incorporated into all SEM clay soil studies.


Sign in / Sign up

Export Citation Format

Share Document