The morphology, higher-level phylogeny and classification of the Empidoidea (Diptera)

Zootaxa ◽  
2006 ◽  
Vol 1180 (1) ◽  
pp. 1 ◽  
Author(s):  
BRADLEY J. SINCLAIR ◽  
JEFFREY M. CUMMING

A cladistic analysis of the Empidoidea and basal lineages of the Cyclorrhapha, based on morphological characters, confirms the monophyly of both groups as well as that of the                    Eremoneura. The resulting final trees are used to revise the classification of the Empidoidea to include the following five families: Empididae, Hybotidae, Atelestidae (including Nemedininae n. subfam.), Brachystomatidae rev. stat. (comprising the subfamilies Brachystomatinae, Ceratomerinae and Trichopezinae), and Dolichopodidae s.lat. The family Microphoridae is not recognized, and the Microphorinae and Parathalassiinae are assigned to the Dolichopodidae s.lat. The Dolichopodidae s.str. includes 15 subfamilies that were previously recognized within the family. Within the Empidoidea we found support for Atelestidae as the sister group to the Hybotidae and for the monophyly of Parathalassiinae + Dolichopodidae s.str. The Empididae remains poorly defined and the genera Homalocnemis Philippi, Iteaphila Zetterstedt, Anthepiscopus Becker, and Oreogeton Schiner are classified as incertae sedis within the                   Empidoidea. In addition, the following higher taxa are proposed: Symballophthalmini n. tribe, Bicellariini n. tribe, Oedaleinae rev. stat., and Trichininae rev. stat., which are all assigned to the Hybotidae. The genus Sematopoda Collin is tentatively assigned to Trichopezinae, and Xanthodromia Saigusa is transferred from Hemerodromiinae to Brachystomatinae.        All morphological characters are extensively discussed and illustrated, including details of the antennae, mouthparts, internal thoracic structures, wings, and male and female terminalia. In addition, a key to families and unplaced genus groups of the Empidoidea is provided. Feeding habits are also discussed in terms of the empidoid ground plan condition.

1997 ◽  
Vol 11 (1) ◽  
pp. 1 ◽  
Author(s):  
A. D. Austin ◽  
and S. A. Field

The morphology of the sclerotised components of the ovipositor system is comprehensively surveyed for scelionid and platygastrid wasps, with information being assessed for 120 genera and 220 species. A diagnosis for the ovipositor system is presented for most genera to complement existing generic descriptions. Two previously described and mechanically different forms of the ovipositor system are recognised: (1) the Ceratobaeus-type that is extended and retracted by antagonistic muscles and (2) the Scelio-type that is operated by changes in hydrostatic pressure, where the ovipositor is extended at the end of an elongate telescopic tube derived from expanded intersegmental membrane between metasomal segments 6 and 7. Comparison of these forms with the supposed ground plan for the Scelionidae strongly indicates that the Scelio-type is apomorphic, that it defines a monophyletic group associated with orthopteran host eggs, and that it comprises the tribes Scelionini, Calliscelionini, most Psilanteridini, Aradophagini, Neoscelionini, Platyscelionini, Doddiellini and four genera misplaced within the Sparasionini and Baryconini (Archaeoteleia Masner, Bracalba Dodd, Chromoteleia Ashmead and Oxyscelio Kieffer), as well as Sceliacanthella Dodd. Until a more robust classification of the superfamily is forthcoming, it is proposed that this group be informally referred to as the 'Scelionini sensu lato'. Further, seven genera (Habroteleia Kieffer, Palpoteleia Kieffer, Anteris Foerster, Fusicornia Risbec, Leptoteleia Kieffer, Opisthacantha Ashmead and Styloteleia Kieffer) are misplaced in the Calliscelionini and Psilanteridini because they possess the Ceratobaeus-type system. Nixonia Masner, Sparasion Latreille and Sceliomorpha Ashmead (Sparasionini) are considered to have the most primitive ovipositor system because they possess a Ceratobaeus-type system, and sub-basally fused lateral and latero-ventral apodemes, the latter being loosely attached to sternite 6. Sparasion and Sceliomorpha also have very short lateral apodemes and this, in conjunction with the form of the apodemes, can be considered to be the ground plan for the superfamily. The Platygastridae all possess a modified ovipositor system but, nonetheless, one that in most cases is extended and retracted by musculature (i.e. Ceratobaeus-type). In particular, the system in most platygastrids is typified by having metasomal tergite 8 and associated cerci missing, the lateral apodemes short and forming a U-shape, and the ovipositor assembly generally robust. Only one of approximately 30 genera examined, Acerotella Masner, has very elongate apodemes, as in the Scelionidae. Many platygastrids also have a pair of latero-ventral apodemes, a presumed plesiomorphic character, rather than a single medial apodeme on stemite 6, which is the case for many Scelionidae. The most highly modified system is found in Isostasius Foerster and some Synopeas (Sactogaster) Foerster, where the ovipositor assembly is coiled vertically or partly so and the apodemes are greatly reduced. Generally, characters associated with the ovipositor system do not provide any independent support for the most recent higher-level classification of platygastrids, although they show substantial potential for more accurate definition of genera. A preliminary cladistic analysis of 14 ovipositor characters supports the monophyly of five clades that correspond to the Scelionini s. l., the Scelionidae (minus the Sparasionini sensu stricto), the Sparasionini s. str., the Platygastridae, and the Sparasioriini s. str. + Platygastridae. Overall, results from this study will provide baseline information on the ovipositor system as a prelude to a more complete phylogenetic analysis of the superfamily including external morphological characters. Although no new classification for the Scelionidae and Platygastridae is proposed, their higher-level taxonomy is reviewed and discussed and cases identified where, on the basis of ovipositor morphology, taxa (tribes and/or genera) apparently form monophyletic groups, and where taxa are misplaced. Finally, the status of the major higher-level groups within the superfamily is discussed, as is the available evidence to support their monophyly.


2006 ◽  
Vol 37 (3) ◽  
pp. 257-279 ◽  
Author(s):  
William Wolfe ◽  
Kelly Miller ◽  
Olof Biström

AbstractThe phylogeny of the Hydroporinae is investigated in a cladistic analysis emphasizing placement of the genus Peschetius Guignot, historically placed in the tribe Hydroporini. Sixty-nine adult and larval morphological characters were coded for 61 species of Hydroporinae representing eight of the nine tribes. Cladistic analysis of the data resulted in 396 most parsimonious cladograms (length = 176, CI = 46, RI = 80). The results indicate that the genus Peschetius is the sister group to the tribe Bidessini based mainly on an unambiguous character, the presence of a prominent internal spermathecal spine, and several other more ambiguous or homoplasious characters. The tribe Bidessini is expanded to include the genus Peschetius, and it is formally transferred from the tribe Hydroporini. Other results indicating interesting relationships of tribes and genera within Hydroporinae are also discussed. Results include; 1) a dramatically paraphyletic Hydroporini with Laccornellus Roughley and Wolfe, Canthyporus Zimmermann and Hydrocolus Roughley and Larson in basal positions within the phylogeny, 2) Hydrovatus Motschulsky and Queda Sharp resolved as sister groups and not closely related to Methlini van den Branden, 3) support for close relationship of Pachydrus Sharp (Pachydrini Biström, Nilsson and Wewalka) with Hyphydrini Sharp, 4) paraphyly of Hygrotus Stephens sensu lato with the relationship H. (Coelambus) Thomson + (Hygrotus sensus stricto + Hydrovatini)) suggesting recognition of Coelambus and Hygrotus as separate genera, 5) close relationship between the Australian genera of Hydroporini and Hyphydrini and 6) the nesting of Vatellini within a group of Hydroporini.


2008 ◽  
Vol 22 (5) ◽  
pp. 563 ◽  
Author(s):  
M. C. Domínguez ◽  
S. A. Roig-Juñent

The present study proposed a phylogenetic hypothesis of the family Fanniidae based on a cladistic analysis using characters from adult external morphology and female and male terminalia. The main purpose of this study was to clarify the phylogenetic position of newly described or poorly known species, mostly from southern South America, the Neotropics, Africa, Australia and New Zealand. In total, 151 characters from adult male and female external morphology and terminalia were scored for 78 species of Fanniidae. Ten continuous characters were included and analysed as such. Three genera of Fanniidae and all the species-groups and subgroups proposed for the genus Fannia, except for the admirabilis-group and the setifer-subgroup were included as terminal taxa. An heuristic parsimony analysis under implied weights was performed. The analysis recovered the monophyly of the Fanniidae and the genus Fannia, as well as the monophyly of several species-groups within Fannia. Male and female external morphological characters were, in general, highly homoplasious, whereas characters from male terminalia showed low level of homoplasy and provided resolution at suprageneric nodes and species-groups.


2020 ◽  
Vol 34 (2) ◽  
pp. 133
Author(s):  
Carlos E. Santibáñez-López ◽  
Andrés A. Ojanguren-Affilastro ◽  
Prashant P. Sharma

Historically, morphological characters have been used to support the monophyly, composition, and phylogenetic relationships of scorpion families. Although recent phylogenomic analyses have recovered most of these traditional higher-level relationships as non-monophyletic, certain key taxa have yet to be sampled using a phylogenomic approach. Salient among these is the monotypic genus Caraboctonus Pocock,1893, the type species of the family Caraboctonidae Kraepelin, 1905. Here, we examined the putative monophyly and phylogenetic placement of this family, sampling the library of C. keyserlingi Pocock, 1893 using high throughput transcriptomic sequencing. Our phylogenomic analyses recovered Caraboctonidae as polyphyletic due to the distant placement of the genera Caraboctonus and Hadrurus Thorell, 1876. Caraboctonus was stably recovered as the sister-group of the monotypic family Superstitioniidae Stahnke, 1940, whereas Hadrurus formed an unstable relationship with Uroctonus Thorell, 1876and Belisarius Simon, 1879. Four-cluster likelihood mapping revealed that the instability inherent to the placement of Hadrurus, Uroctonus and Belisarius was attributable to significant gene tree conflict in the internodes corresponding to their divergences. To redress the polyphyly of Caraboctonidae, the following systematic actions have been taken: (1) the family Caraboctonidae has been delimited to consist of 23 species in the genera Caraboctonus and Hadruroides Pocock, 1893; (2) Caraboctonidae, previously included in the superfamily Iuroidea Thorell, 1876 or as incertae sedis, is transferred to the superfamily Caraboctonoidea (new rank); (3) the superfamily Hadruroidea (new rank) is established and the status of Hadrurinae Stahnke, 1973 is elevated to family (Hadruridae new status) including 9 species in the genera Hadrurus and Hoffmannihadrurus Fet & Soleglad, 2004 and (4) we treat Uroctonus and Belisarius as insertae sedis with respect to superfamilial placement. Our systematic actions engender the monophyly of both Iuroidea and Caraboctonidae. Future phylogenomic investigations should target similar taxon-poor and understudied lineages of potential phylogenetic significance, which are anticipated to reveal additional non-monophyletic groups.


2019 ◽  
pp. 1-123 ◽  
Author(s):  
Victor H. Gonzalez ◽  
Grey T Gustafson ◽  
Michael S Engel

A unique feature among bees is the ability of some species of Megachile Latreille s.l. to cut and process fresh leaves for nest construction. The presence of a razor between the female mandibular teeth (interdental laminae) to facilitate leaf-cutting (LC) is a morphological novelty that might have triggered a subsequent diversification in this group. However, we have a limited understanding of the phylogeny of this group despite the large number of described species and the origins and patterns of variations of this mandibular structure are unknown. Herein, using a cladistic analysis of adult external morphological characters, we explored the relationships of all genera of Megachilini and the more than 50 subgenera of Megachile s.l. We coded 272 characters for 8 outgroups and 114 ingroup species. Depending on the weighting scheme (equal or implied weighting), our parsimony analyses suggested the monophyly of Megachile s.l. and that either Noteriades Cockerell or the clade Coelioxys Latreille + Radoszkowskiana Popov is the extant sister group of all other Megachilini. In addition, we conducted Bayesian total-evidence tip-dating analyses to examine other possible hypotheses of relationships and patterns of variation of the interdental lamina. Our analyses suggest that interdental laminae developed asynchronicaly from two different structures in the mandible, and differ in their phenotypic plasticity. Character correlation tests using phylogenetic pairwise comparisons indicated that the presence of interdental lamina is not associated with head size, mandible size and shape, and pubescence on the adductor interspace. We discuss the implications of our findings for the classification of Megachilini and the development of novel evolutionary, ecological, and functional hypotheses on this behavior. New taxa established are Pseudoheriadini Gonzalez & Engel, new tribe, Ochreriadini Gonzalez & Engel, new tribe, Cremnomegachile Gonzalez & Engel, new genus, Rozenapis Gonzalez & Engel, new genus, and Saucrochile Gonzalez & Engel, new genus, along with the following new combinations: Cremnomegachile dolichosoma (Benoist), new combination, Rozenapis ignita (Smith), new combination, and Saucrochile heriadiformis (Smith), new combination.


Zootaxa ◽  
2006 ◽  
Vol 1236 (1) ◽  
pp. 37 ◽  
Author(s):  
LUCIANE MARINONI ◽  
WAYNE N. MATHIS

A cladistic analysis of the 13 known species of Sepedonea Steyskal, 1973, is presented and a new species, Sepedonea giovana sp. n., is described. The monophyly of the genus is confirmed, as is the genus’ sister-group relationship to Sepedomerus Steyskal, 1973. The cladistic analysis was done using NONA and a matrix of 27 adult morphological characters, including structures of the male and female terminalia. The relationships in parenthetic notation are: (S. guatemalana (S. veredae (S. lindneri (S. isthmi (S. lagoa ((S. barbosai+ S. canabravana) ((S. neffi (S. giovana+S. guianica))(S. telson (S. incipiens+S. trichotypa))))))))).


1994 ◽  
Vol 25 (1) ◽  
pp. 63-88 ◽  
Author(s):  
Joel Minet

AbstractThis paper is chiefly aimed at reassessing the limits of four bombycoid families, namely the Eupterotidae, Saturniidae, Lemoniidae, and Brahmaeidae. An incompletely resolved cladogram is proposed for the whole 'bombycoid complex' (Mimallonoidea + Lasiocampoidea + Bombycoidea). Within the Bombycoidea, the primary dichotomy is considered to lie between the Eupterotidae + Bombycidae s.lat. + Endromidae + Mirinidae + Saturniidae, and the Carthaeidae + Lemoniidae + Brahmaeidae + Sphingidae. Sharing at least nine synapomorphies, the Lemoniidae and Brahmaeidae are regarded as reliable sister groups, and the Lemoniidae + Brahmaeidae are proposed as a sister group to the Sphingidae. Another newly proposed clade groups together the Endromidae, Mirinidae and Saturniidae. At family level, the Hibrildidae are synonymized with the Eupterotidae (syn. n.), for which the most significant autapomorphy lies in a previously unnoticed particularity of the female hind leg (distitarsus typically provided with a midventral row of spines). Sexual dimorphism in leg structure also leads to a redefinition of the Saturniidae, a family which must include, with subfamily rank (stat. rev.), the 'Oxytenidae' and 'Cercophanidae' of modern authors. A pair of distal, tooth-like structures on the fourth tarsomere of the female fore leg can thus be ascribed to the ground plan of the Saturniidae, along with a few other convincing autapomorphies. On the other hand, the 'Apatelodidae' are only tentatively placed in the 'Bombycidae sensu lato', a group provisionally resurrected insofar as the Apatelodidae sensu auct. prove to be diphyletic. As a matter of fact, the 'apatelodid' subfamily Epiinae is synonymized with the Bombycinae (syn. n.) in consideration of a rather large number of synapomorphies. When more extensively studied, the morphology of the eighth sternum of the male abdomen might lead to a slightly different, more restricted, concept of the Bombycidae (Le. excluding 'true' Apatelodidae). Often regarded as incertae sedis, the African genera Sabalia Walker and Spiramiopsis Hampson are definitely assigned to the Lemoniidae and Brahmaeidae respectively. Autapomorphies of these two families are recorded and discussed, as are those found to characterize the Sphingidae. Three subfamilies are tentatively recognized within the latter (Smerinthinae stat. rev., Sphinginae, Macroglossinae), five within the Eupterotidae (Hibrildinae, Tissanginae, Janinae, Panacelinae, Eupterotinae), and four within the Bombycidae s.lat. (Apatelodinae, Phiditiinae subfam. n., Prismostictinae [= Oberthueriinae, syn. rev.], Bombycinae). Three of these subfamilies are considered in a new sense, viz. the Panacelinae, Apatelodinae, and Bombycinae. Although the phylogeny of the Saturniidae is not fully taken into account in the present study, the composition of three saturniid subfamilies is critically examined (Oxyteninae, Cercophaninae, Ludiinae), and the Oxyteninae are viewed as the most 'primitive' member of the family.


Author(s):  
Alberto Sendra ◽  
Dragan Antić ◽  
Pablo Barranco ◽  
Špela Borko ◽  
Erhard Christian ◽  
...  

Diplura is a group of entognathous hexapods, often considered a sister group to insects. They play an important role in recycling organic matter in soil and subterranean terrestrial ecosystems. The Campodeidae is the most diverse family, divided into four subfamilies. The subfamily Plusiocampinae has a subterranean life-style with many species distributed in the Euro-Mediterranean area. The incertae sedis tachycampoids (“lignée Tachycampoïde”) is a group within the family Campodeidae that share with the Plusiocampinae a strong preference for subterranean habitats and several morphological characters, such as slender body shape, elongated appendages, considerable increment in the number of antennomeres and cercal articles, and complexity of sensorial structures. The present monograph provides a taxonomic revision of the subfamily Plusiocampinae and the genera belonging to the tachycampoid lineage from Europe and the Mediterranean region. It comprises detailed morphological descriptions and illustrations together with data on the habitats and distributions of 87 species, 10 subspecies and 11 affinis forms. Seven new species are described among those, namely: Plusiocampa (Plusiocampa) apollo Sendra, Giachino & Vailati sp. nov., P. (P.) chiosensis Sendra & Gasparo sp. nov., P. (P.) dublanskii Sendra & Turbanov sp. nov., P. (P.) hoffmanni Sendra & Paragamian sp. nov., P. (P.) rhea Sendra sp. nov., P. (P.) ternovensis Sendra & Borko sp. nov. and P. (Venetocampa) ferrani Sendra & Delić sp. nov.


2021 ◽  
Vol 79 ◽  
pp. 151-170
Author(s):  
Carlos Molineri ◽  
Lucimar G. Dias ◽  
María del Carmen Zúñiga

Abstract The family Polymitarcyidae, with a worldwide distribution, includes mayflies with large burrowing nymphs. South America harbors the highest diversity of this family, including the subfamilies Asthenopodinae and Campsurinae. In this work, three new species belonging to the genera Tortopsis and Tortopus (Campsurinae) are described based on adults and nymphs from Colombia: Tortopsis torosp. nov., Tortopsis andakisp. nov. and Tortopus coreguajesp. nov. Additionally, Tortopsis limoncocha is firstly recorded from Colombia. A cladistic analysis of all the species in these genera is presented, using external morphological characters of adults and eggs. Keys to male and female adults of all the species of both genera are presented.


Zootaxa ◽  
2010 ◽  
Vol 2627 (1) ◽  
pp. 39 ◽  
Author(s):  
ROBERTO CALDARA ◽  
DAVIDE SASSI ◽  
IVO TOŠEVSKI

A phylogenetic analysis of the species belonging to the weevil genus Rhinusa Stephens, 1829 (Coleoptera: Curculionidae: Curculioninae: Mecinini) was carried out. Rhinusa weevils feed on plants of the closely related families Scrophulariaceae and Plantaginaceae. Based on a cladistic analysis of six outgroup and 33 ingroup taxa, and 39 adult morphological and 8 ecological characters, eight well supported species groups and two monobasic groups belonging to three separate and more inclusive assemblages were recognized. The first assemblage (A) includes nine species belonging to two groups (R. bipustulata and R. tetra groups), whereas the second and third assemblages (B and C) include a total of 14 species belonging to two groups (R. antirrhini and R. linariae groups) and six groups (R. pilosa, R. herbarum, R. neta, R. vestita, R. mauritii and R. melas groups), respectively. Two of the three main assemblages (A and B) are well supported as monophyletic entities, whereas the third assemblage (C) has weak support contingent in part upon the exclusion of host plant associations. Assemblage A includes all species living on species of Scrophulariaceae, with two groups occurring on two closely related plant genera, Scrophularia (R. bipustulata group) and Verbascum (R. tetra group), respectively. The other two assemblages include species living exclusively on species of the family Plantaginaceae, tribe Antirrhineae. These patterns suggest a well conserved and phylogenetically congruent association among the weevils and their hosts. Optimizing host plant preferences onto the morphological phylogeny indicates that feeding on Plantaginaceae was the plesiomorphic condition for the genus Rhinusa. In general there are no strict relationships between groups of weevils and their specific feeding habits; however, species of the R. antirrhini group are all feeding on seed capsules. In contrast, in other groups the larvae of closely related species display significant variations in host plant parasitism. Some species of the R. tetra group feed on seed capsules whereas others are stem borers. In turn, certain species of the R. neta group feed on seed capsules yet others are inquilines of gall forming species of Rhinusa. The latter habit is present in multiple convergent groups such as the R. linariae and R. pilosa groups.


Sign in / Sign up

Export Citation Format

Share Document