Expression of RANTES by human bronchial epithelial cells in vitro and in vivo and the effect of corticosteroids.

Author(s):  
J H Wang ◽  
J L Devalia ◽  
C Xia ◽  
R J Sapsford ◽  
R J Davies
1996 ◽  
Vol 5 (3) ◽  
pp. 210-217
Author(s):  
M. M. Verheggen ◽  
H. I. M. de Bont ◽  
P. W. C. Adriaansen-Soeting ◽  
B. J. A. Goense ◽  
C. J. A. M. Tak ◽  
...  

In this study, we investigated the expression of lipocortin I and II (annexin I and I in the human bronchial epithelium, bothin vivoandin vitro. A clear expression of lipocortin I and II protein was found in the epithelium in sections of bronchial tissue. In cultured human bronchial epithelial cells we demonstrated the expression of lipocortin I and II mRNA and protein using Northern blotting, FACScan analysis and ELISA. No induction of lipocortin I or II mRNA or protein was observed after incubation with dexamethasone. Stimulation of bronchial epithelial cells with IL-1β, TNF-α or LPS for 24 h did not affect the lipocortin I or II mRNA or protein expression, although PGE2and 6-keto-PGF1αproduction was significantly increased. This IL-1β- and LPS-mediated increase in eicosanoids could be reduced by dexamethasone, but was not accompanied by an increase in lipocortin I or II expression. In human bronchial epithelial cells this particular glucocorticoid action is not mediated through lipocortin I or II induction.


Lung ◽  
1997 ◽  
Vol 175 (5) ◽  
pp. 287-298 ◽  
Author(s):  
A. T. Hastie ◽  
K. B. Everts ◽  
J. R. Shaver ◽  
R. Cirelli ◽  
J. Zangrilli ◽  
...  

Author(s):  
Maximillian Woodall ◽  
Boris Reidel ◽  
Mehmet Kesimer ◽  
Robert Tarran ◽  
Deborah L Baines

Airway secretions contain many signalling molecules and peptides/proteins that are not found in airway surface liquid (ASL) generated by normal human bronchial epithelial cells (NHBE) in vitro. These play a key role in innate defence and mediate communication between the epithelium, immune cells and the external environment. We investigated how culture of NHBE with apically applied secretions from healthy or disease (Cystic Fibrosis, CF) lungs affected epithelial function with a view to providing better in vitro models of the in vivo environment. NHBE from 6-8 different donors were cultured at air-liquid interface (ALI), with apically applied sputum from normal healthy donors (NLS) or CF donors (CFS) for 2-4 hours, 48 hours or with sputum reapplied over 48 hours. Proteomic analysis was carried out on the sputa and on NHBE ASL before and after culture with sputa. Transepithelial electrical resistance (TEER), short circuit current (Isc) and changes to ASL height were measured. There were 71 proteins common to both sputa but not ASL. The protease:protease inhibitor balance was increased in CFS compared to NLS and ASL. Culture of NHBE with sputa for 48 hours identified additional factors not present in NLS, CFS or ASL alone. Culture with either NLS or CFS for 48 hours increased CFTR activity, calcium activated chloride channel (CaCC) activity and changed ASL height. These data indicate that culture with healthy or disease sputum changes the proteomic profile of ASL and ion transport properties of NHBE and this may increase physiological relevance when using in vitro airway models.


2002 ◽  
Vol 10 (1) ◽  
pp. 31-40 ◽  
Author(s):  
Neil R. Mathias ◽  
Julita Timoszyk ◽  
Paul I. Stetsko ◽  
John R. Megill ◽  
Ronald L. Smith ◽  
...  

Cytokine ◽  
1998 ◽  
Vol 10 (10) ◽  
pp. 803-813 ◽  
Author(s):  
Vincent H.J. van der Velden ◽  
Brigitta A.E. Naber ◽  
Annet F. Wierenga-Wolf ◽  
Reno Debets ◽  
Huub F.J. Savelkoul ◽  
...  

Author(s):  
Michal Mastalerz ◽  
Elisabeth Dick ◽  
Ashesh Anjankumar Chakraborty ◽  
Elisabeth Hennen ◽  
Andrea C Schamberger ◽  
...  

Rationale. The bronchial epithelium is constantly challenged by inhalative insults including cigarette smoke (CS), a key risk factor for lung disease. In vitro exposure of bronchial epithelial cells using CS extract (CSE) is a widespread alternative to whole CS (wCS) exposure. However, CSE exposure protocols vary considerably between studies, precluding direct comparison of applied doses. Moreover, they are rarely validated in terms of physiological response in vivo and the relevance of the findings is often unclear. Methods. We tested six different exposure settings in primary human bronchial epithelial cells (phBECs), including five CSE protocols in comparison with wCS exposure. We quantified cell-delivered dose and directly compared all exposures using expression analysis of 10 well-established smoke-induced genes in bronchial epithelial cells. CSE exposure of phBECs was varied in terms of differentiation state, exposure route, duration of exposure, and dose. Gene expression was assessed by quantitative Real-Time PCR (qPCR) and Western Blot analysis. Cell type-specific expression of smoke-induced genes was analyzed by immunofluorescent analysis. Results. Three surprisingly dissimilar exposure types, namely chronic CSE treatment of differentiating phBECs, acute CSE treatment of submerged basal phBECs, and wCS exposure of differentiated phBECs performed best, resulting in significant upregulation of seven (chronic CSE) and six (acute wCS, acute submerged CSE exposure) out of 10 genes. Acute apical or basolateral exposure of differentiated phBECs with CSE was much less effective despite similar doses used. Conclusions. Our findings provide guidance for the design of human in vitro CS exposure models in experimental and translational lung research.


Sign in / Sign up

Export Citation Format

Share Document