Abstract
Methicillin-resistant coagulase-negative staphylococci (MR-CoNS) cause infectious diseases due to their potential to form biofilm and further colonization in hospital materials. This study evaluated the antibiotic susceptible phenotypes, biofilm-producing ability, and biofilm-associated genes (mecA, icaAD, bap, cna, and fnbA). Biofilm formation was detected through Congo red agar (CRA) method and MTP method. The presence of biofilm and associated genes in MR-CoNS were detected by PCR. A total of 310 (55.95%) isolates produced the biofilm. Among these isolates, Staphylococcus haemolyticus (34.83%), Staphylococcus epidermis (31.93%), Staphylococcus capitis (16.77%), Staphylococcus cohnii (10.96%), and Staphylococcus hominis (5.48%) were identified. The antimicrobial susceptibility pattern of CoNS isolates indicated resistance to cefoxitin (100%), erythromycin (94.8%), ciprofloxacin (66.7%), sulfamethoxazole/trimethoprim (66.7%), gentamicin (66.12%), and clindamycin (62.9%). Resistance rate to mupirocin was 48.5% in S. epidermidis and 38.9% in S. haemolyticus isolates. All isolates were sensitive to vancomycin and linezolid.
The prevalence rates of icaAD, bap, fnbA, and cna were 18.06%, 12.5%, 47.4%, and 27.4%, respectively. icaAD and bap genes were detected in 18.06% and 12.5% of MR-CoNS isolates. fnbA and cna genes were detected in 47.41% and 27.41% of MRCoNS isolates. icaAD positive strains exhibited a significant increase in the biofilm formation compared with those that lacked icaAD (0.86 (0.42, 1.39) versus 0.36 (0.14, 0.75), respectively; P < 0.001).
In conclusion, the majority of MR-CoNS isolates were biofilm producers, and S. capitis, which possessed icaAD genes, ranked as the great biofilm producer than other Staphylococcus. The study’s findings are important to form a strategy to control biofilm formation as an alternative strategy to counter the spread of MR-CoNS in healthcare settings.